

Dr. Geol. STEFANO CASTAGNETTI

GEOLOGIA TECNICA E AMBIENTALE

STUDI A CARATTERE DI PROTEZIONE CIVILE

via Argini Sud, 24 - 43030 BASILICANOVA PR

2e fax 0521.681244 - 338.8740794

e-mail: studio@stefacasta.it

ANALISI DEL RISCHIO SISMICO

Secondo livello di approfondimento

Atto di indirizzo e coordinamento tecnico ai sensi dell'art. 16, c.1, della L.R. 20/2000 per "Indirizzi per gli studi di microzonazione sismica in Emilia-Romagna per la pianificazione territoriale e urbanistica", approvato con Delibera dell'Assemblea Legislativa della Regione Emilia-Romagna n° 112 del 2 maggio 2007

Allegato 2

Rilievi geofisici di tipo sismico a rifrazione (basi sismiche I – J – K – L – M – N)

il tecnico incaricato:

Dott. Geol. Stefano Castagnetti

con la collaborazione di: Dott. Geol. Marco Baldi

Gennaio 2009

Sede Legale: Via di Mezzo, 90 – 41058 VIGNOLA (MO) – ITALY

Telefono +39 059 761644 - Telefax +39 059 779111

Web www.geo-xpert.com ---- Email info@geo-xpert.com

PARTITA I.V.A.: 02740680364 - COD. FISCALE: 02740680364 - C.C.I.A.A. 326926

COMMITTENTE

Dott. Geol. CASTAGNETTI STEFANO

Via Argini sud, 24 43030 BASILICANOVA (PARMA)

TIPOLOGIA DELL'INTERVENTO

DETERMINAZIONE DELLE Vs30 AI FINI DELLA VALUTAZIONE DELLA RISPOSTA SISMICA LOCALE DELLA MICROZONAZIONE SISMICA DI CUI ALLA D.A.L. 112/2007

OGGETTO DELL'ELABORATO

RELAZIONE DI INDAGINE GEOFISICA DI TIPO SISMICO A RIFRAZIONE

COMPARTO PRATO GAVASSA

LOCALIZZAZIONE
ITALIA
REGIONE: EMILIA ROMAGNA
PROVINCIA: REGGIO EMILIA

CODIFICA GENERALE ELABORATO							
CODICE INTERNO	LOTTO	SETTORE DI ATTIVITA'	TIPO DOCUMENTO	N. ELABORATO			
2480	I-J	G	REL	1			

VERSIONE	DATA	OGGETTO		
0	25/11/2008	1° EMISSIONE		

DATI PROGETTISTA

Dott. Geol. Giorgio Masotti Via di Mezzo, 90 41058 Vignola (MO) – Italy

INDICE

1	PREMESSA	. 3
2	INQUADRAMENTO GEOGRAFICO	. 3
3	NORMATIVA D.M. 14/01/2008	. 6
4	INDAGINI GEOFISICHE DI TIPO SISMICO A RIFRAZIONE	
5	BASE SISMICA "I"	
6	VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "I"	
7	ELABORAZIONE DATI RILEVATI - BASE "I"	
8	BASE SISMICA "J"	
9	VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "J"	
10	ELABORAZIONE DATI RILEVATI - BASE "J"	37
	INDICE DEGLI ALLEGATI	
Figi	JRA 1: ESTRATTO DI CARTA TOPOGRAFICA R.E.R. N. N. 201-NO "CORREGGIO" – NORD" - SCALA 1:25.000	
	JRA 2: ESTRATTO DI IMMAGINE SATELLITARE CON INDICAZIONE DEL LIMITE DI COMPARTO	. 5
	JRA 3: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "I"	
	JRA 4: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI - BASE "I"	
	JRA 5: ANDAMENTO DELLE DROMOCRONE - BASE "I"	
Figi	JRA 6: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00 ESTERNAMENT	
	AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "I"	
FIG	JRA 7: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "I"	(. 4 4
F.O.	JRA 8: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E N	14 D
FIG	JRA 6. TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRATGEOFONTINR. 12 E N 13 IN POSIZIONE CENTRALE - BASE "I"	
Figi	JRA 9: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E N	
1 100	19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "I"	
Figi	JRA 10: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00	
	ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "I"	17
Figi	JRA 11: SEZIONE INTERPRETATIVA – BASE "I"	
Figi	JRA 12: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "I"	19
Figi	JRA 13: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "I"	20
	JRA 14: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "I"	
Figi	JRA 15: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO	
_	INVERSIONE - BASE "I"	
	JRA 16: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "J"	
	JRA 17: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI – BASE "J"	
FIGU	JRA 18: ANDAMENTO DELLE DROMOCRONE - BASE "J"	27
FIGI	ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "J"	၁၀
Figi	JRA 20: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E N	
1 100	7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "J"	
Figi	JRA 21: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E	20
	NR. 13 IN POSIZIONE CENTRALE - BASE "J"	30
Figi	JRA 22: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E	
	NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "J"	31
Figi	JRA 23: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00	
	ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "J"	
	JRA 24: SEZIONE INTERPRETATIVA – BASE "J"	
	JRA 25: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "J"	
	JRA 26: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "J"	
	JRA 27: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "J"	
FIGI	JRA 28: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO	
	INVERSIONE - BASE "J"	30

1 PREMESSA

Come richiesto dal tecnico incaricato per gli studi geologici-geotecnici, il sottoscritto:

Dott. Giorgio Masotti, Geologo libero professionista, regolarmente iscritto all'Ordine dei Geologi della Regione
 Emilia Romagna con il numero 588, in qualità di consulente tecnico della ditta Geo-Xpert Italia – Servizi –
 Tecnologie e Ambiente snc, con sede in Vignola (MO) – Via di Mezzo, 90,

ha provveduto alla stesura della presente relazione, finalizzata alla elaborazione delle indagini geofisiche effettuate con il metodo sismico a rifrazione ai fini della determinazione della caratterizzazione sismica del terreno di fondazione ai sensi del testo unitario "Norme Tecniche per le Costruzioni" (D.M. 14.01.2008).

L'area interessata dall'indagine geologico-geotecnica si trova in comune di Reggio Emilia, Comparto PRATO GAVASSA.

Allo scopo di determinare le caratteristiche litologiche e stratigrafiche dei terreni presenti, è stata condotta un'indagine diretta in sito di tipo sismico a rifrazione costituita da nr. 2 basi sismiche che sono state eseguite in data 06/11/2008, con determinazione sperimentale mediante inversione (Metodo MASW) del valore di V_{s,30}.

2 INQUADRAMENTO GEOGRAFICO

La zona oggetto d'intervento si colloca nell'ambito del territorio comunale di REGGIO EMILIA, e risulta compresa all'interno della documentazione cartografica sotto riportata:

Cartografia Regionale:

- CARTA TOPOGRAFICA n. 201-NO denominata "CORREGGIO" Scala 1:25.000
- SEZIONE R.E.R. n. 201050 "MASSENZATICO" scala 1:10.000

Figura 1: ESTRATTO DI CARTA TOPOGRAFICA R.E.R. n. n. 201-NO "CORREGGIO" – NORD" - SCALA 1:25.000

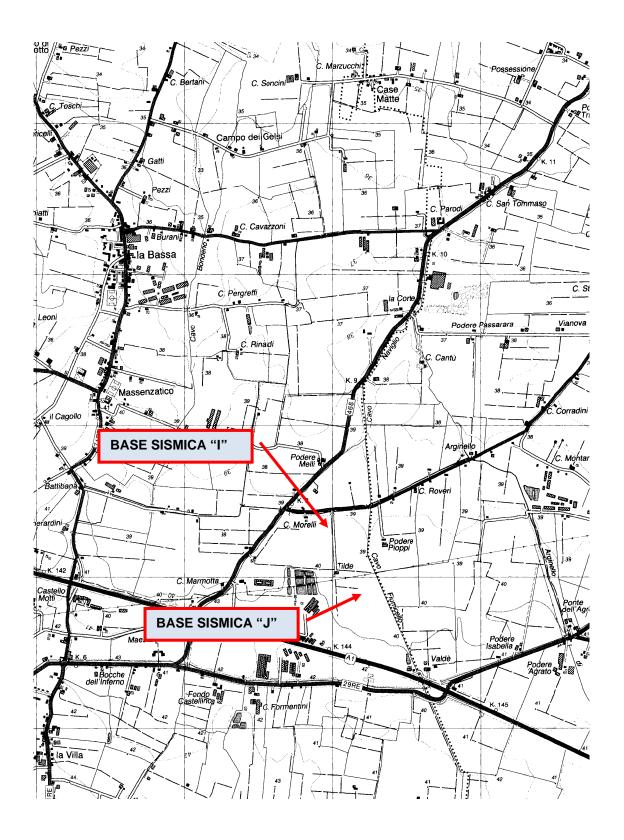



Figura 2: ESTRATTO DI IMMAGINE SATELLITARE CON INDICAZIONE DEL LIMITE DI COMPARTO

3 NORMATIVA D.M. 14/01/2008

Le "Norme tecniche per le costruzioni" definiscono che, ai fini della valutazione della azione sismica di progetto (punto 3.2.2. "Categoria di suolo e condizioni topografiche"), deve essere valutata l'influenza delle condizioni litologiche, morfologiche e topografiche locali sulle caratteristiche del moto del suolo in superficie, mediante studi specifici di risposta sismica locale.

In mancanza di tali studi si può utilizzare una classificazione che riguardi i terreni compresi tra il piano di imposta delle fondazioni degli edifici ed il sub-strato rigido di riferimento con velocità delle onde di taglio $V_s > 800$ m/s (bedrock) o comunque un sub-strato commisurato alla estensione ed importanza dell'opera.

La classificazione si effettua in base ai valori della velocità equivalente V_{s,30} di propagazione delle onde di taglio entro i primi 30 metri di profondità.

Nei casi in cui tale determinazione della velocità non sia disponibile, la classificazione può essere eseguita in base ai valori del numero equivalente di colpi della prova penetrometrica dinamica (Standard Penetration Test) $N_{SPT,30}$ nei terreni prevalentemente a grana grossa e della resistenza non drenata equivalente $c_{u,30}$ nei terreni prevalentemente a grana fina.

	
la resistenza penetrometrica dinamica equivale	nte N _{SPT,30} è definita dall'espressione
la resistenza non drenata equivalente c _{u,30} è de	finita dall'espressione

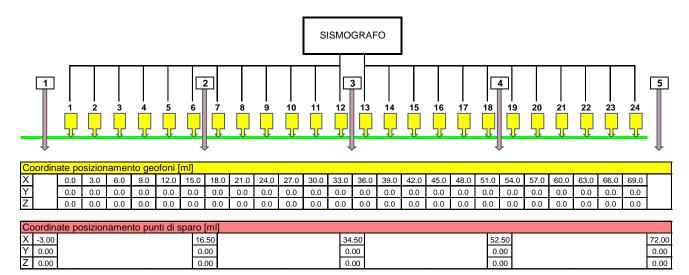
La velocità equivalente delle onde di taglio V_{s,30} è definita dall'espressione

dove h_i , $V_{s,i}$, $N_{SPT,i}$ e $c_{u,i}$ sono rispettivamente lo spessore, la velocità delle onde di taglio V_s , il numero di colpi N_{SPT} e la resistenza non drenata c_u nell'i-esimo strato compreso nei primi 30 metri di profondità.

Le categorie di sottosuolo di riferimento sono:

Categoria	Descrizione
Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s,
	eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto
	consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà
	meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 $>$
	50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti,
	con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche
	con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 <50 nei
	terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente
	consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà
	meccaniche con la profondità e da valori di Vs,30 inferiori a 180 m/s (ovvero NSPT,30 < 15 nei terreni a
	grana grossa e cu,30 <70 kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D con spessore non superiore ai 20 m, posti sul substrato di
	riferimento (con Vs > 800 m/s).
-	

La normativa prevede due categorie aggiuntive di sottosuolo per le quali è necessario predisporre specifiche analisi per la definizione delle azioni sismiche, particolarmente nei casi in cui la presenza di terreni suscettibili di liquefazione e/o di argille d'elevata sensibilità possa comportare fenomeni di collasso del terreno:


Categoria	Descrizione					
S1	Depositi di terreni caratterizzati da valori di Vs,30 < 100 m/s (ovvero 10 < cu,30 < 20 kPa), che					
	ncludono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono					
	almeno 3 m di torba o di argille altamente organiche.					
S2	Depositi di terreni suscettibili a liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo					
	non classificabile nei tipi precedenti.					

4 INDAGINI GEOFISICHE DI TIPO SISMICO A RIFRAZIONE

Al fine di determinare le caratteristiche geotecniche dei terreni del comparto urbanistico di studio sono state eseguite in data 06/11/2008 nr. 2 basi sismiche a rifrazione con sistema di acquisizione 24 canali con energizzazione del terreno mediante una mazza battente da Kg. 9 su una piastra di battuta in alluminio per i nr. 3 punti di energizzazione centrali (nr. 2/3/4), mentre per i 2 punti estremi (nr. 1/5) è stato utilizzato un energizzatore per sismica, classificato dal Ministero dell'Interno come "strumento di lavoro", costituito da un corpo cilindrico di forma tubolare in acciaio inox con una sezione anteriore svitabile, denominata camera di cartuccia, predisposta per contenere una cartuccia di tipo industriale calibro 8. La camera di cartuccia è senza canna, consentendo l'esplosione assiale dell'onda di energia con generazione di onde di tipo "P" (longitudinali) e di tipo "S" (trasversali).

Per la disposizione dei trasduttori velocimetrici (geofoni) sul sito oggetto di indagine, è stato definito un allineamento mantenendo una equidistanza ripetitiva lungo tutta la tratta della base sismica, come evidenziato nello schema sottostante.

Caratteristiche geometriche dello stendimento sismico

Lunghezza linea sismica	69,0m	Spazio intergeofonico	3,0m	
Numero di punti di energizzazione	5	Numero di trasduttori velocimetri	24	

Strumentazione e impostazioni di registrazione

Modello strumento di acquisizione	PASI 16S24
Risoluzione di campionamento	16 bit
Frequenza di campionamento	125 μs
Geofoni verticali con frequenza di pari a 4,5 Hz	24
Tempo di acquisizione	256 ms

Per quanto riguarda l'inizio della registrazione è stato utilizzato un geofono "starter" posizionato in aderenza alla piastra di battuta e collegato allo strumento in modo da garantire uno scarto di errore sul "Tempo Zero" non superiore a 1 msec. Per la base sismica sono stati effettuati nr. 5 punti di energizzazione lungo lo stendimento sismico:

1a energizzazione posta a ml. 3.00 verso l'esterno rispetto al geofono nr. 1 (estremo sinistro)

2a energizzazione posta tra i geofoni nr. 6 e nr. 7 (intermedio sinistro)

3a energizzazione posta tra i geofoni nr. 12 e nr. 13 (centrale)

4a energizzazione posta tra i geofoni nr. 18 e nr. 19 (intermedio destro)

5a energizzazione posta a ml. 3.00 verso l'esterno rispetto al geofono nr. 24 (estremo destro)

5 BASE SISMICA "I"

SCALA 1:1.000

Figura 3: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "I"

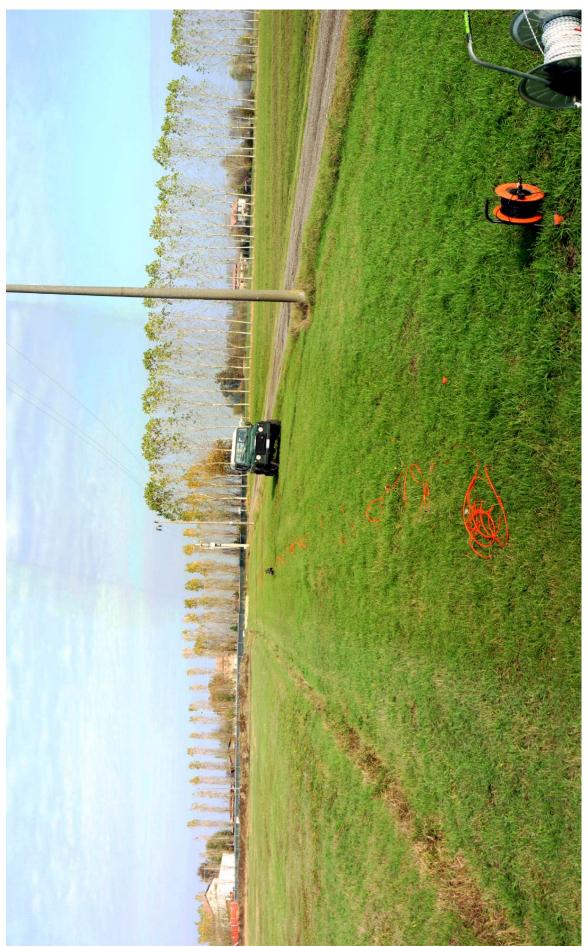


Figura 4: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI - BASE "I"

File Reference				
1	I1.DAT			
2	I67.DAT			
3	I1213.DAT			
4	I1819.DAT			
5	I24.DAT			
MASW	I24M.DAT			

SHOOT POINTS COORDINATE							
SP	Elev [m]	X-loc [m]	Y-Loc [m]	Depth [m]			
1	0,00	-3,00	0,00	0,00			
2	2 0,00		0,00	0,00			
3	0,00	34,50	0,00	0,00			
4	4 0,00 5 0,00		0,00	0,00			
5			0,00	0,00			

FIRST BREAKS ARRIVAL								
Geo	Z [m]	X-loc [m]	Y-Loc [m]	SP 1 [mS]	SP 2 [mS]	SP 3 [mS]	SP 4 [mS]	SP 5 [mS]
1	0,00	0,00	0,00	18,36	35,21	47,97	57,32	70,58
2	0,00	3,00	0,00	25,48	31,82	45,61	55,78	69,48
3	0,00	6,00	0,00	31,17	28,43	43,25	54,48	67,41
4	0,00	9,00	0,00	34,71	25,04	40,89	52,81	64,89
5	0,00	12,00	0,00	37,26	21,65	38,53	51,49	63,14
6	0,00	15,00	0,00	38,61	4,77	36,18	49,60	61,87
7	0,00	18,00	0,00	40,95	5,22	35,42	47,70	60,60
8	0,00	21,00	0,00	42,59	18,18	32,69	45,81	57,09
9	0,00	24,00	0,00	44,36	25,38	29,96	43,59	54,36
10	0,00	27,00	0,00	46,12	31,53	27,43	41,66	52,67
11	0,00	30,00	0,00	47,88	33,12	20,25	39,73	50,80
12	0,00	33,00	0,00	49,65	35,46	2,52	37,81	48,94
13	0,00	36,00	0,00	51,41	36,54	3,42	35,88	47,08
14	0,00	39,00	0,00	53,17	39,60	19,26	33,13	45,21
15	0,00	42,00	0,00	54,94	42,12	26,59	31,38	43,35
16	0,00	45,00	0,00	57,45	42,84	29,88	26,88	41,49
17	0,00	48,00	0,00	58,87	44,64	32,67	21,13	39,62
18	0,00	51,00	0,00	60,29	45,99	35,60	7,56	37,76
19	0,00	54,00	0,00	61,43	49,09	37,26	6,50	35,90
20	0,00	57,00	0,00	63,64	51,03	38,88	21,63	34,29
21	0,00	60,00	0,00	65,03	53,19	40,50	27,25	31,82
22	0,00	63,00	0,00	66,85	54,71	42,12	31,00	26,53
23	0,00	66,00	0,00	68,24	56,16	43,92	33,25	22,50
24	0,00	69,00	0,00	70,61	57,32	45,09	34,88	14,94

LAYERS DEPTH						
Geo	X-loc [m]	Layer 2 [m]	Layer 3 [m]	Layer 4 [m]	Layer 5 [m]	
1	0,00	3,30	13,81	0,00	0,00	
2	3,00	3,09	13,81	0,00	0,00	
3	6,00	2,93	13,57	0,00	0,00	
4	9,00	2,92	13,43	0,00	0,00	
5	12,00	2,99	13,43	0,00	0,00	
6	15,00	3,03	13,20	0,00	0,00	
7	18,00	3,09	13,43	0,00	0,00	
8	21,00	3,05	13,30	0,00	0,00	
9	24,00	3,03	12,97	0,00	0,00	
10	27,00	3,05	12,97	0,00	0,00	
11	30,00	3,06	13,20	0,00	0,00	
12	33,00	3,07	12,97	0,00	0,00	
13	36,00	3,04	12,83	0,00	0,00	
14	39,00	3,05	13,06	0,00	0,00	
15	42,00	3,05	12,97	0,00	0,00	
16	45,00	3,06	13,06	0,00	0,00	
17	48,00	3,09	13,30	0,00	0,00	
18	51,00	3,12	13,20	0,00	0,00	
19	54,00	3,17	13,67	0,00	0,00	
20	57,00	3,10	13,67	0,00	0,00	
21	60,00	2,93	13,81	0,00	0,00	
22	63,00	2,76	14,04	0,00	0,00	
23	66,00	2,68	14,27	0,00	0,00	
24	69,00	2,69	14,88	0,00	0,00	

LAYERS	LAYERS VELOCITY			
Layer	Velocity [m/s]			
1	250			
2	1498			
3	2227			
4				
5				

Figura 5: ANDAMENTO DELLE DROMOCRONE - BASE "I"

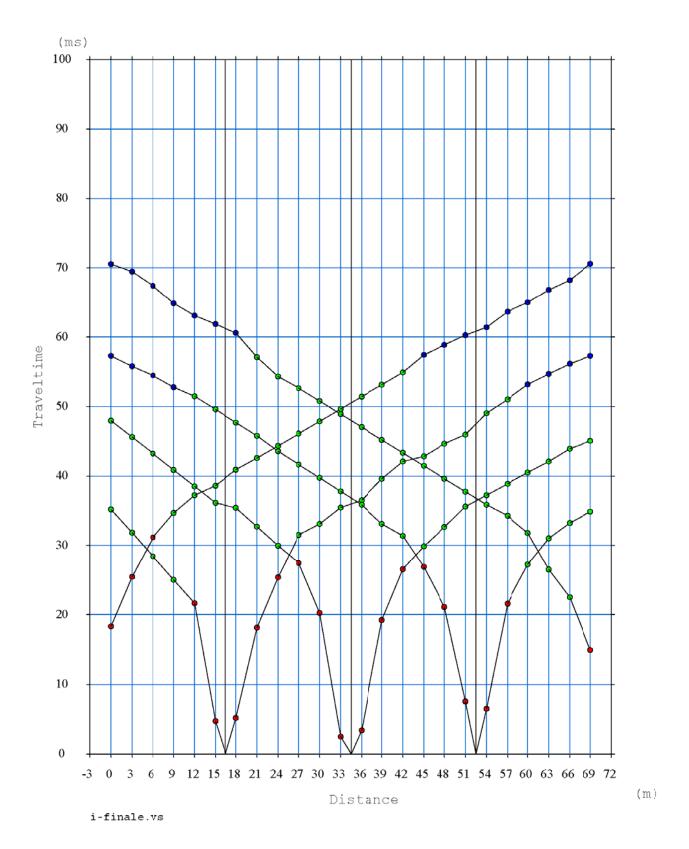


Figura 6: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "I"

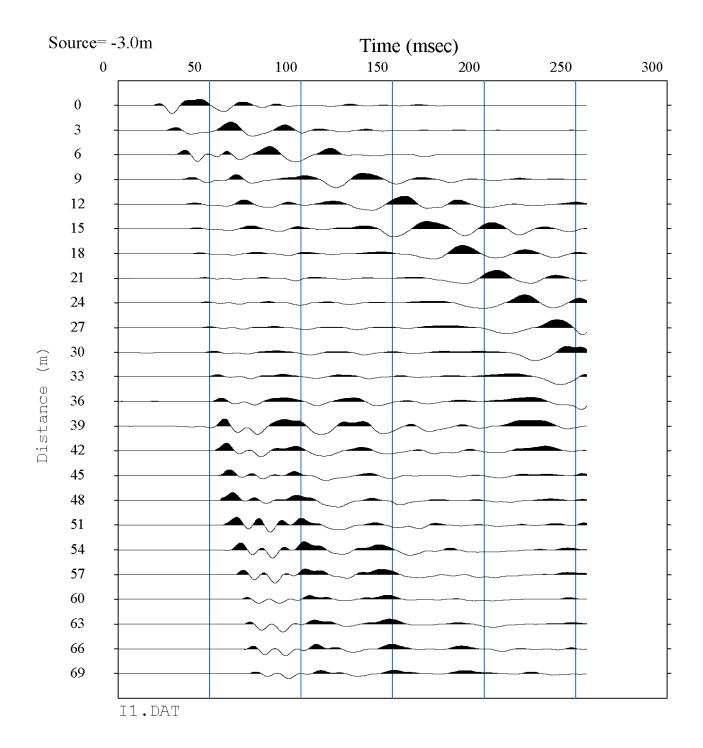


Figura 7: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR. 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "I"

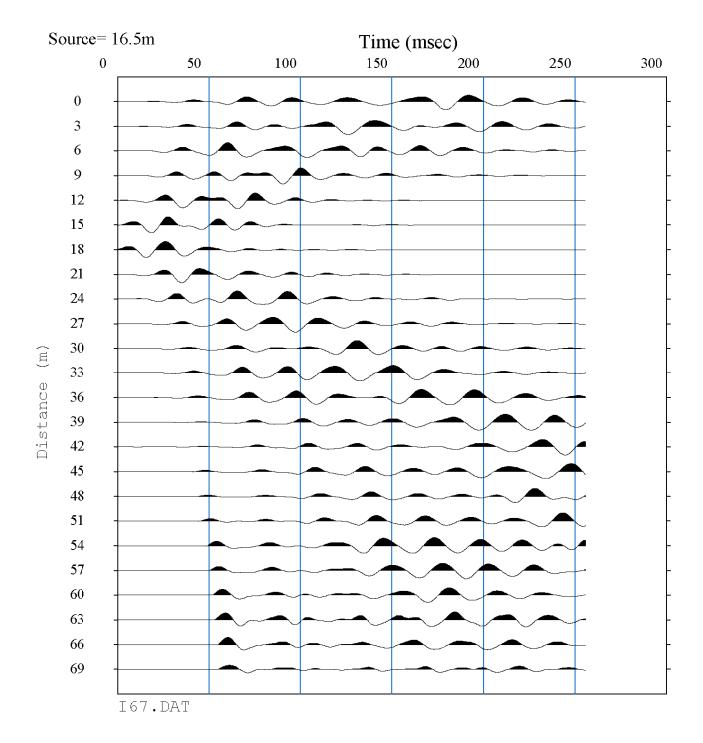


Figura 8: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR. 13 IN POSIZIONE CENTRALE - BASE "I"

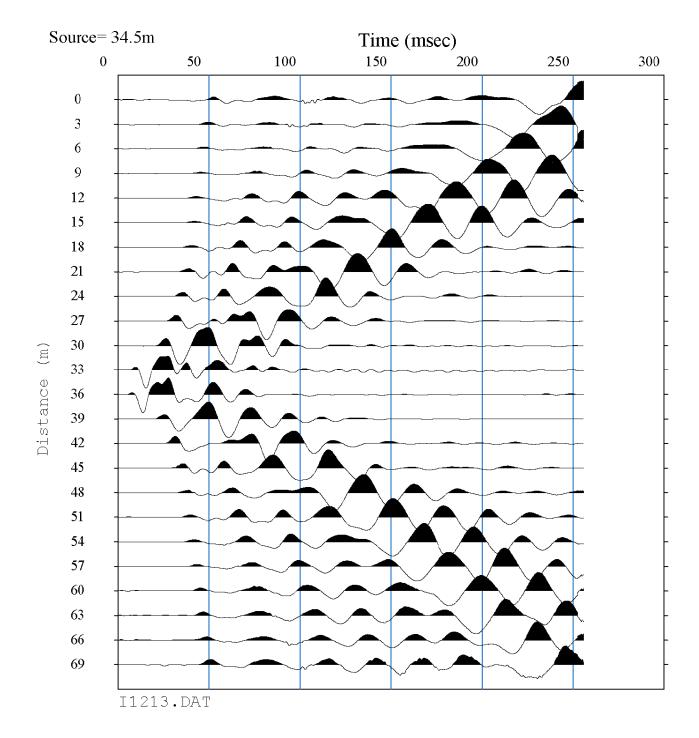


Figura 9: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "I"

Figura 10: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00 ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "I"

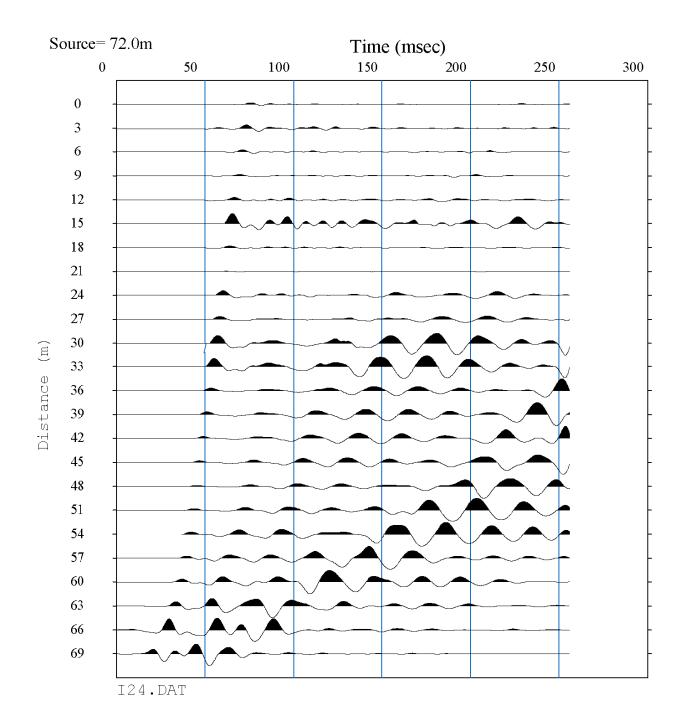
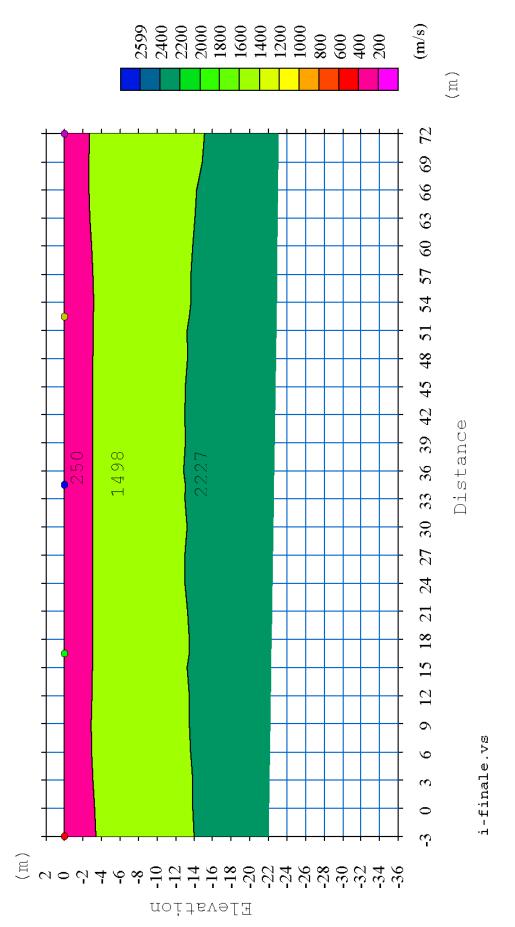



Figura 11: SEZIONE INTERPRETATIVA – BASE "I"

6 VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "I"

La determinazione della velocità delle onde sismiche di taglio (V_s) è stata effettuata mediante elaborazione con il metodo MASW, allo scopo di determinare la categoria sismica del terreno (A, B, C, D, E, S1, S2) secondo quanto indicato dalla Nuova Normativa Sismica (Ordinanza P.C.M. 2003 e s.m.i.) e dagli Eurocodici 7 e 8.

Per l'elaborazione MASW si è tenuta in considerazione la traccia sismica rilevata a seguito dell'energizzazione effettuata a ml. 3,00 dal geofono nr. 24 in posizione di estremo destro rispetto alla base sismica.

L'elaborazione ha riguardato l'intero campionamento della registrazione avente durata 2048 mS e una frequenza di campionamento di 500 microS. Le misure del moto in superficie sono state elaborate tramite una doppia trasformata del campo d'onda (trasformate Slant-Stack e di Fourier), con la quale viene rappresentato il segnale nel dominio ω -p (frequenza angolare - slowness), in modo da identificare la curva di dispersione sperimentale delle onde di Rayleigh. Successivamente si procede con la determinazione del profilo di velocità delle onde di taglio V_s attraverso un processo di inversione delle stesse curve di dispersione. Il metodo consiste nell'assumere un profilo di velocità iniziale di primo tentativo e attraverso un opportuno software si calcola la velocità di fase apparente delle onde di Rayleigh corrispondente al profilo stratigrafico di velocità ipotizzato (curva di dispersione teorica). Dal confronto tra la curva di dispersione *sperimentale* e la curva di dispersione *teorica* vengono modificati gli spessori e le velocità del modello per minimizzare la distanza tra le due curve.

Il processo di identificazione si conclude quando si raggiunge la sovrapposizione ottimale fra le due curve, quella *sperimentale* e quella *teorica*.

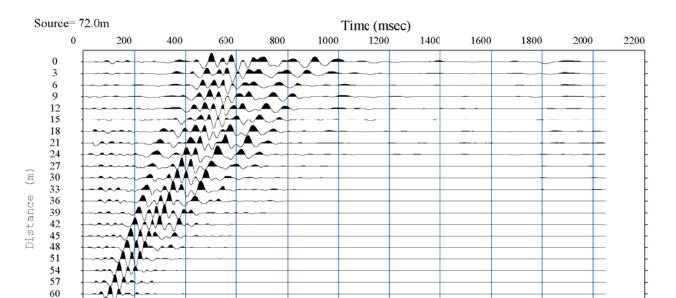


Figura 12: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "I"

66

Figura 13: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "I"

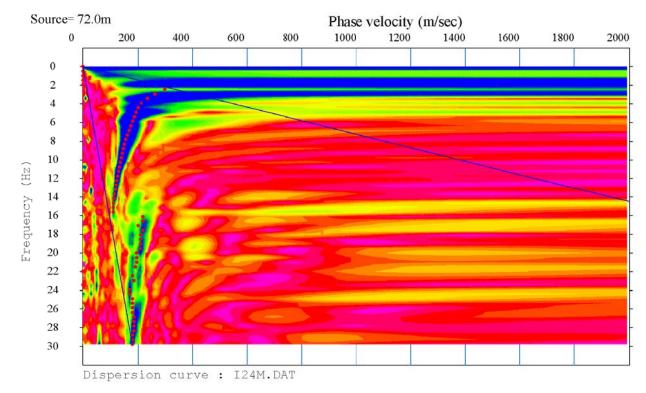


Figura 14: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "I"

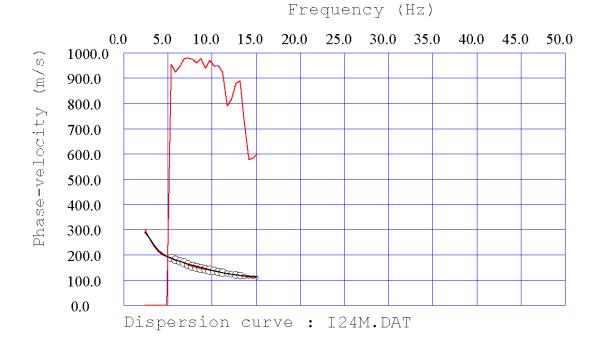
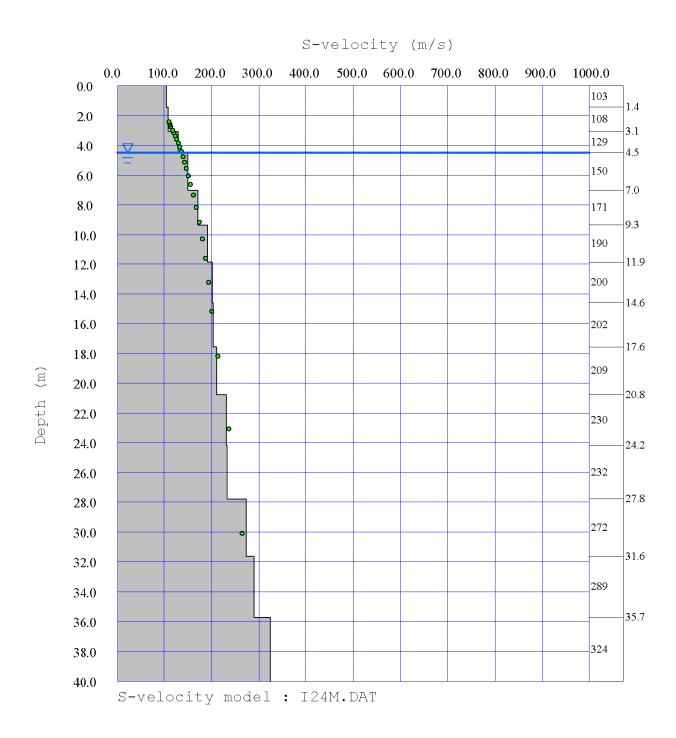



Figura 15: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI INVERSIONE - BASE "I"

7 ELABORAZIONE DATI RILEVATI - BASE "I"

ONDE Vp

L'analisi dei risultati ottenuti dall'indagine di sismica a rifrazione superficiale, ha portato alla classificazione sismostratigrafica dei terreni sottoposti a test investigativo di tipo geometrico e meccanico (profondità dei sismostrati e velocità sismiche longitudinali medie di riferimento).

Le osservazioni ricavate dall'interpretazione dei dati permettono di ricostruire un'immagine sismica del sottosuolo investigato costituita da tre sismostrati con V_{p(media)} rispettivamente pari a 250 m/sec, 1498 m/sec e 2227 m/sec.

Per quanto riguarda la profondità degli orizzonti sismo-stratigrafici si rimanda alla sezione riportata in fig. 11.

ONDE Vs

L'analisi dei risultati ottenuti dall'indagine MASW ha portato alla determinazione degli strati e delle velocità delle onde sismiche trasversali (V_s) fino a una profondità effettiva pari a circa 40 ml. dal piano campagna.

Dall'analisi delle elaborazioni si evidenzia la presenza dei seguenti livelli:

Vel	Velocità onde Vp e Vs ottenute dall'elaborazione MASW						
Strato	Quota da	Spessore	Vs	V _P	Peso di		
	p.c.	dello strato			volume		
	[m]	[m]	[m/s]	[m/s]	[kN/m ³]		
h1	-1,43	1,43	104	238	13,152		
h2	-3,08	1,65	108	244	13,176		
h3	-4,50	1,42	129	280	13,311		
h4	-7,03	2,53	150	1468	17,432		
h5	-9,34	2,31	171	1491	17,505		
h6	-11,87	2,53	191	1511	17,566		
h7	-14,62	2,75	201	1522	17,602		
h8	-17,58	2,96	203	1530	17,627		
h9	-20,77	3,19	210	1546	17,676		
h10	-24,18	3,41	231	1574	17,763		
h11	-27,80	3,62	232	1574	17,763		
h12	-31,65	3,85	273	1607	17,868		
h13	-35,71	4,06	289	1607	17,868		
h14	-48,57	12,86	324	1623	17,914		

Al termine della elaborazione si è rilevato riscontrato una convergenza dei valori pari a 1.704957%, come riportato nella tabella sottostante:

Iteration=0 RMS=17.614393 m/s (11.242268%)	Iteration=1 RMS=14.406257 m/s (9.036957%)
Iteration=2 RMS=11.826331 m/s (7.266184%)	Iteration=3 RMS=9.752488 m/s (5.844536%)
Iteration=4 RMS=8.088727 m/s (4.702507%)	Iteration=5 RMS=6.755807 m/s (3.784175%)
Iteration=6 RMS=5.689800 m/s (3.045098%)	Iteration=7 RMS=4.841292 m/s (2.464988%)
Iteration=8 RMS=4.167221 m/s (2.033139%)	Iteration=9 RMS=3.634800 m/s (1.704957%)

Ai sensi del DM 14.01.2008 (GU del 04.02.2008, n. 29 – S.O. n. 30), punto 3.2.2. "Categoria di suolo e condizioni topografiche", il valore della velocità media delle onde sismiche di taglio nei primi 30 metri $(V_{s,30})$ può essere considerato come segue:

	Calcolo V _{S,30} ottenuto dall'elaborazione MASW						
Strato	Quota da p.c.	h _i	V _{s,i}	h _i / V _{s,i}	Σ h _i / V _{s,i}		
	[m]	[m]	[m/s]	[s]	[s]		
h1	-1,43	1,43000	104	0,01376			
h2	-3,08	1,65000	108	0,01522			
h3	-4,50	1,42000	129	0,01099			
h4	-7,03	2,53000	150	0,01685			
h5	-9,34	2,31000	171	0,01349			
h6	-11,87	2,53000	191	0,01326			
h7	-14,62	2,75000	201	0,01370			
h8	-17,58	2,96000	203	0,01460			
h9	-20,77	3,19000	210	0,01520			
h10	-24,18	3,41000	231	0,01478			
h11	-27,80	3,62000	232	0,01557			
h12	-30,00	2,20000	273	0,00807	•		
h13	-30,00	0,00000	0	0,00000	•		
h14	-30,00	0,00000	0	0,00000	0,16548		
			V _{s,30}	181	[m/s]		

8 BASE SISMICA "J"

SCALA 1:1.000

Figura 16: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "J"

Figura 17: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI – BASE "J"

File Reference				
1	J1.DAT			
2	J67.DAT			
3	J1213.DAT			
4	J1819.DAT			
5	J24.DAT			
MASW	J1M.DAT			

SHOOT POINTS COORDINATE					
SP	Elev [m]	X-loc [m]	Y-Loc [m]	Depth [m]	
1	0,00	-3,00	0,00	0,00	
2	0,00	16,50	0,00	0,00	
3	0,00	34,50	0,00	0,00	
4	0,00	52,50	0,00	0,00	
5	0,00	72,00	0,00	0,00	

FIRST BREAKS ARRIVAL								
Geo	Z [m]	X-loc [m]	Y-Loc [m]	SP 1 [mS]	SP 2 [mS]	SP 3 [mS]	SP 4 [mS]	SP 5 [mS]
1	0,00	0,00	0,00	6,90	34,47	47,09	55,26	71,00
2	0,00	3,00	0,00	15,96	31,74	45,49	54,20	69,75
3	0,00	6,00	0,00	24,54	29,00	43,89	53,14	68,50
4	0,00	9,00	0,00	29,23	24,36	42,30	52,11	67,25
5	0,00	12,00	0,00	33,60	18,54	40,47	50,58	65,75
6	0,00	15,00	0,00	36,06	4,74	38,00	49,04	63,53
7	0,00	18,00	0,00	37,98	4,71	35,52	47,51	60,97
8	0,00	21,00	0,00	39,90	19,14	33,04	45,97	59,03
9	0,00	24,00	0,00	41,83	25,44	30,56	44,44	57,10
10	0,00	27,00	0,00	43,75	29,47	26,69	42,80	55,17
11	0,00	30,00	0,00	45,68	31,44	20,10	40,68	53,24
12	0,00	33,00	0,00	47,60	34,80	6,24	38,56	51,31
13	0,00	36,00	0,00	49,53	37,12	6,24	36,45	49,37
14	0,00	39,00	0,00	51,94	38,71	19,32	33,80	47,44
15	0,00	42,00	0,00	53,99	40,31	26,27	30,33	45,51
16	0,00	45,00	0,00	56,05	41,91	29,76	26,85	43,58
17	0,00	48,00	0,00	58,10	43,51	33,66	19,47	41,64
18	0,00	51,00	0,00	60,16	45,10	35,75	5,64	39,71
19	0,00	54,00	0,00	62,21	46,70	37,84	5,94	37,78
20	0,00	57,00	0,00	64,26	48,30	39,93	20,70	35,85
21	0,00	60,00	0,00	65,62	49,65	41,95	26,70	33,42
22	0,00	63,00	0,00	67,24	50,58	43,21	31,32	24,87
23	0,00	66,00	0,00	68,86	51,27	44,47	34,28	16,86
24	0,00	69,00	0,00	70,48	52,48	45,74	35,76	7,02

LAYERS DEPTH						
Geo	X-loc [m]	Layer 2 [m]	Layer 3 [m]	Layer 4 [m]	Layer 5 [m]	
1	0,00	3,74	9,67	0,00	0,00	
2	3,00	3,76	9,99	0,00	0,00	
3	6,00	3,57	10,26	0,00	0,00	
4	9,00	3,30	10,53	0,00	0,00	
5	12,00	3,24	10,37	0,00	0,00	
6	15,00	3,35	9,83	0,00	0,00	
7	18,00	3,34	9,40	0,00	0,00	
8	21,00	3,27	9,29	0,00	0,00	
9	24,00	3,33	9,13	0,00	0,00	
10	27,00	3,42	9,13	0,00	0,00	
11	30,00	3,53	9,02	0,00	0,00	
12	33,00	3,60	8,75	0,00	0,00	
13	36,00	3,64	8,59	0,00	0,00	
14	39,00	3,55	8,59	0,00	0,00	
15	42,00	3,41	8,59	0,00	0,00	
16	45,00	3,37	8,75	0,00	0,00	
17	48,00	3,40	8,86	0,00	0,00	
18	51,00	3,41	8,75	0,00	0,00	
19	54,00	3,29	8,74	0,00	0,00	
20	57,00	3,18	9,13	0,00	0,00	
21	60,00	3,29	9,13	0,00	0,00	
22	63,00	3,56	9,29	0,00	0,00	
23	66,00	3,71	9,56	0,00	0,00	
24	69,00	3,72	10,10	0,00	0,00	

LAYERS VELOCITY			
Layer	Velocity [m/s]		
1	297		
2	1387		
3	1724		
4			
5			

Figura 18: ANDAMENTO DELLE DROMOCRONE - BASE "J"

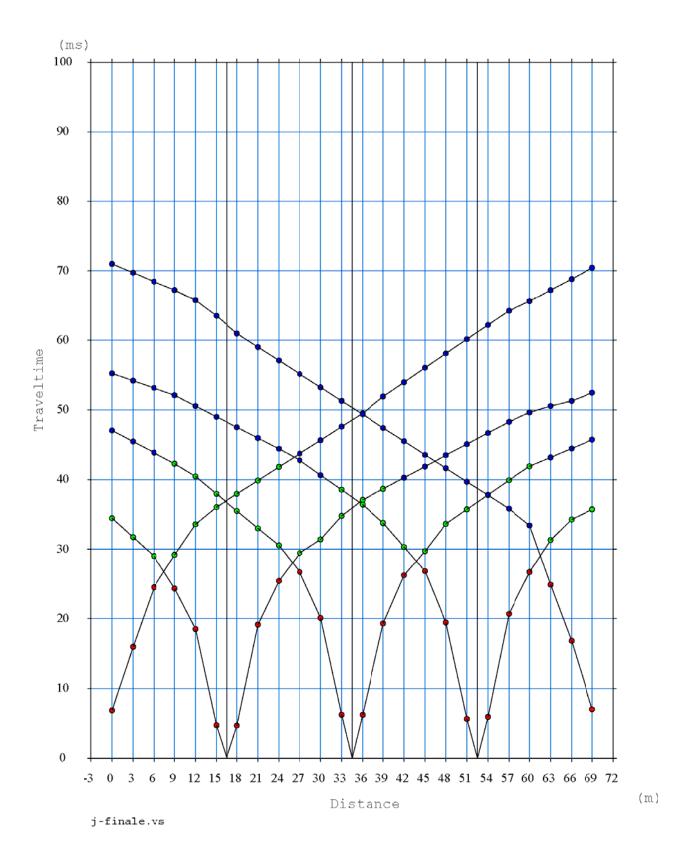


Figura 19: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "J"

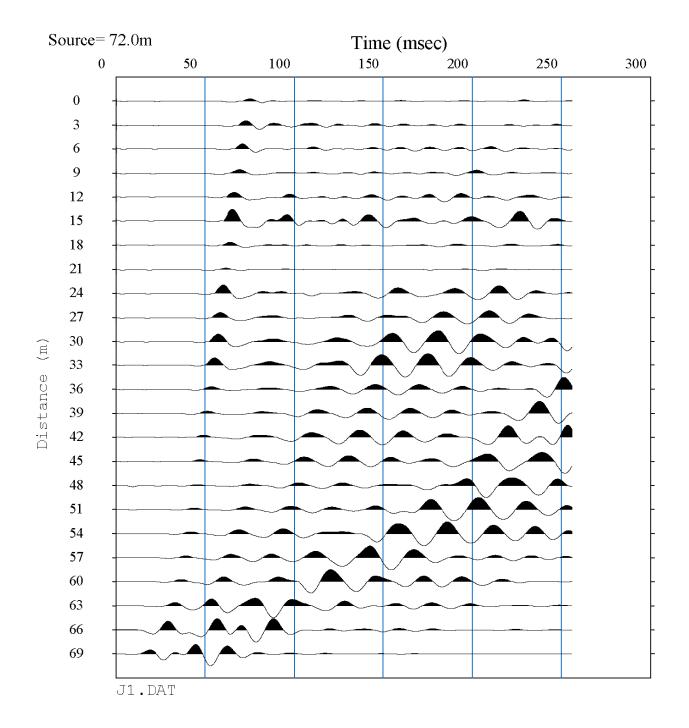


Figura 20: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR. 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "J"

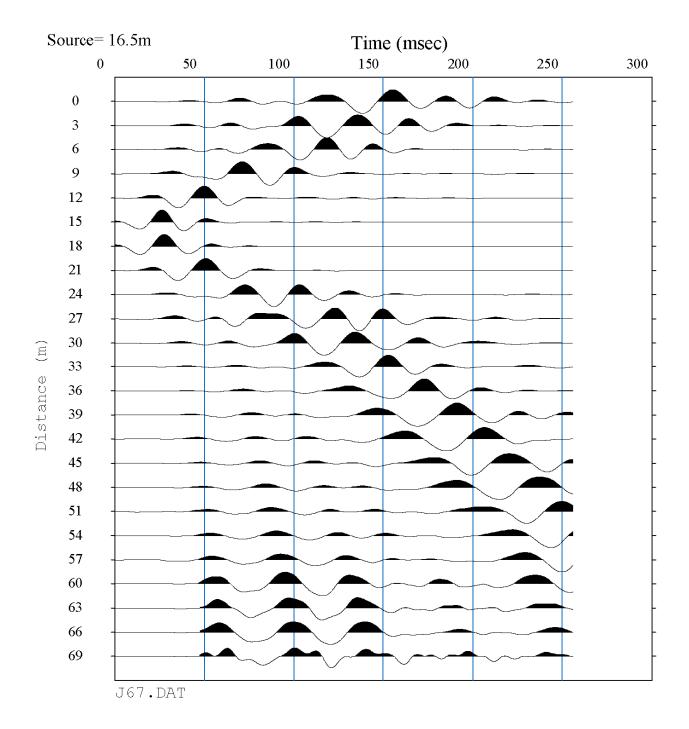


Figura 21: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR. 13 IN POSIZIONE CENTRALE - BASE "J"

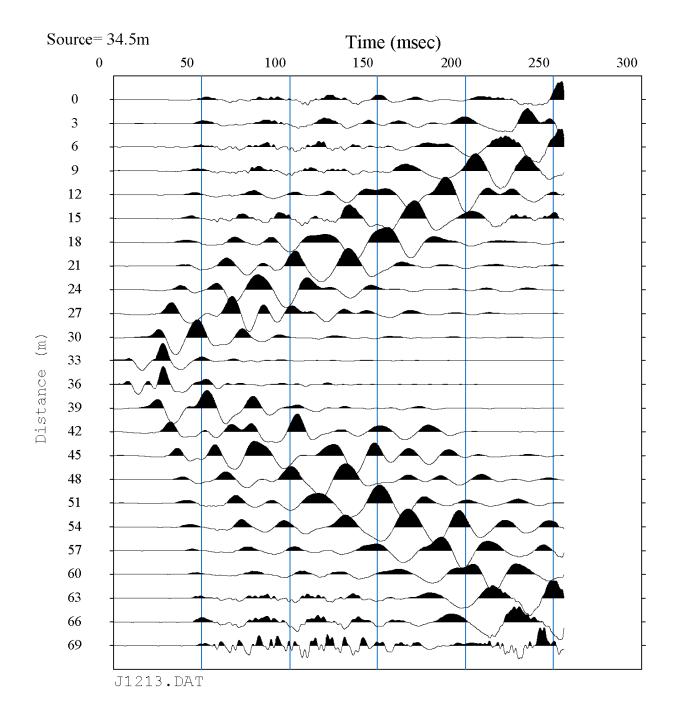


Figura 22: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "J"

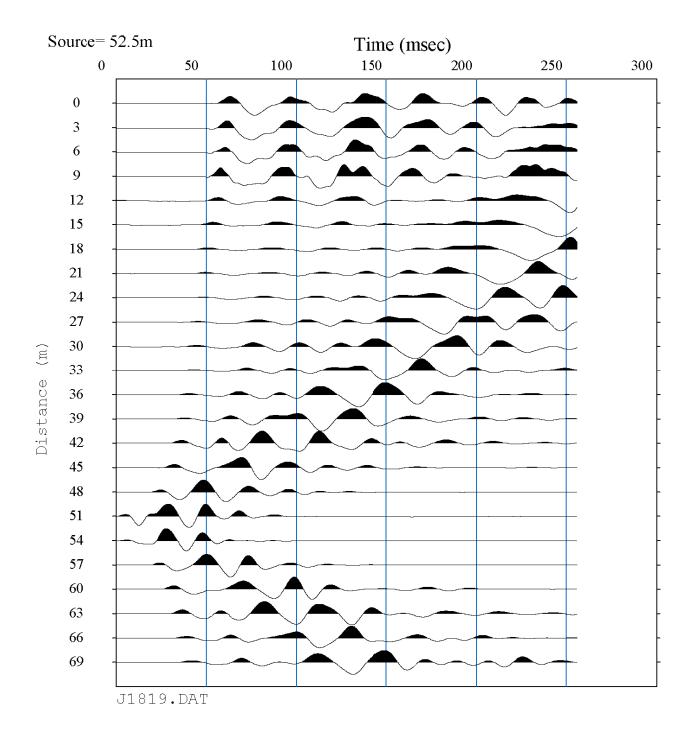


Figura 23: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 3,00 ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "J"

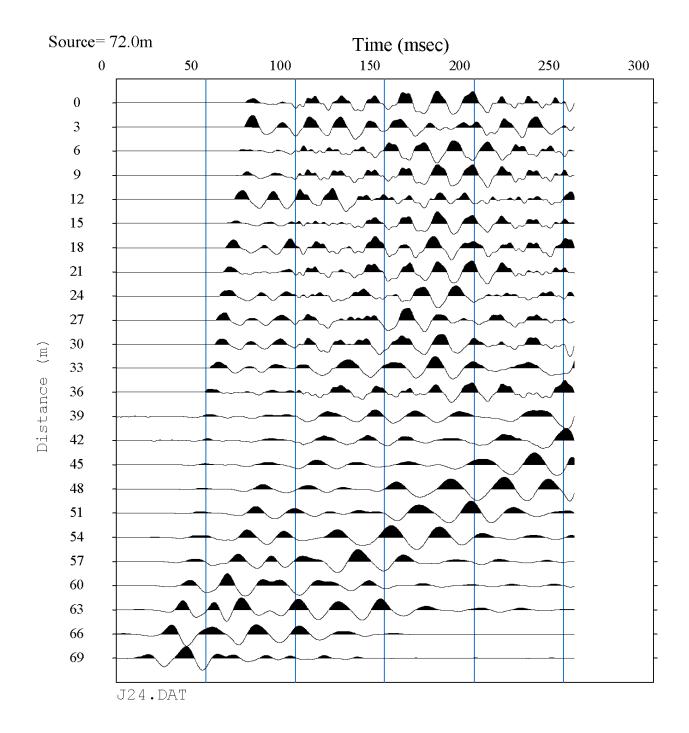
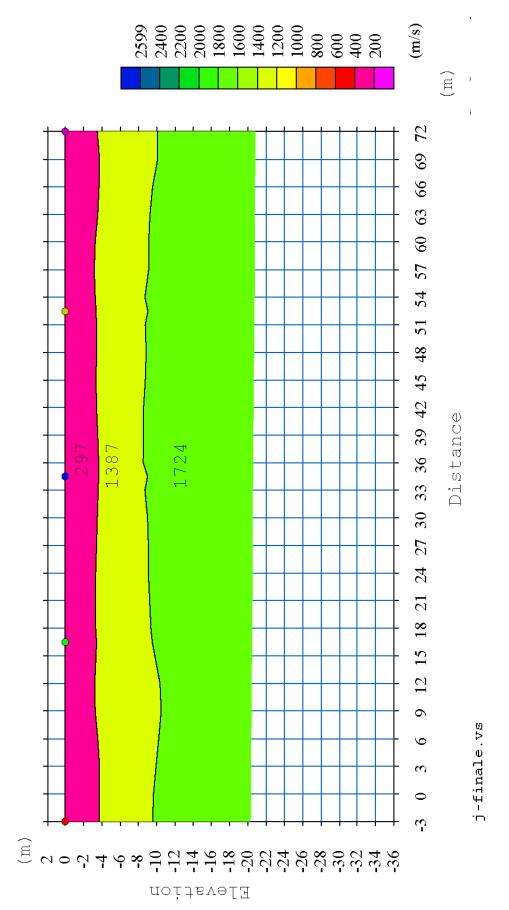



Figura 24: SEZIONE INTERPRETATIVA – BASE "J"

9 VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "J"

La determinazione della velocità delle onde sismiche di taglio (V_s) è stata effettuata mediante elaborazione con il metodo MASW, allo scopo di determinare la categoria sismica del terreno (A, B, C, D, E, S1, S2) secondo quanto indicato dalla Nuova Normativa Sismica (Ordinanza P.C.M. 2003 e s.m.i.) e dagli Eurocodici 7 e 8.

Per l'elaborazione MASW si è tenuta in considerazione la traccia sismica rilevata a seguito dell'energizzazione effettuata a ml. 3,00 dal geofono nr. 24 in posizione di estremo destro rispetto alla base sismica.

L'elaborazione ha riguardato l'intero campionamento della registrazione avente durata 2048 mS e una frequenza di campionamento di 500 microS. Le misure del moto in superficie sono state elaborate tramite una doppia trasformata del campo d'onda (trasformate Slant-Stack e di Fourier), con la quale viene rappresentato il segnale nel dominio ω -p (frequenza angolare - slowness), in modo da identificare la curva di dispersione sperimentale delle onde di Rayleigh. Successivamente si procede con la determinazione del profilo di velocità delle onde di taglio V_s attraverso un processo di inversione delle stesse curve di dispersione. Il metodo consiste nell'assumere un profilo di velocità iniziale di primo tentativo e attraverso un opportuno software si calcola la velocità di fase apparente delle onde di Rayleigh corrispondente al profilo stratigrafico di velocità ipotizzato (curva di dispersione teorica). Dal confronto tra la curva di dispersione *sperimentale* e la curva di dispersione *teorica* vengono modificati gli spessori e le velocità del modello per minimizzare la distanza tra le due curve.

Il processo di identificazione si conclude quando si raggiunge la sovrapposizione ottimale fra le due curve, quella *sperimentale* e quella *teorica*.

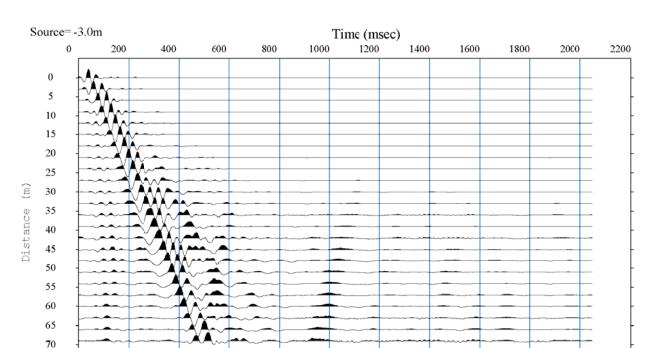


Figura 25: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "J"

J1M.DAT

Figura 26: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "J"

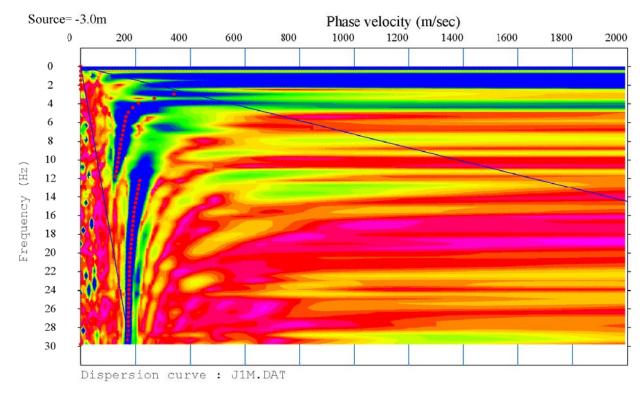


Figura 27: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "J"

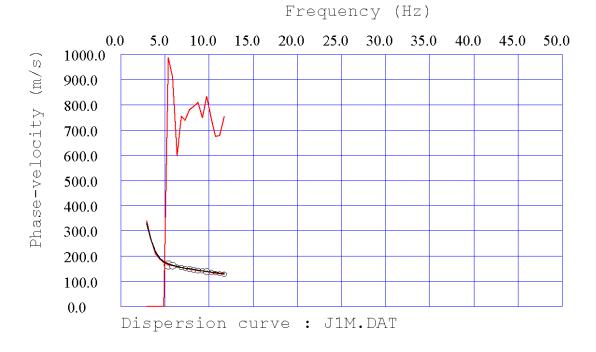
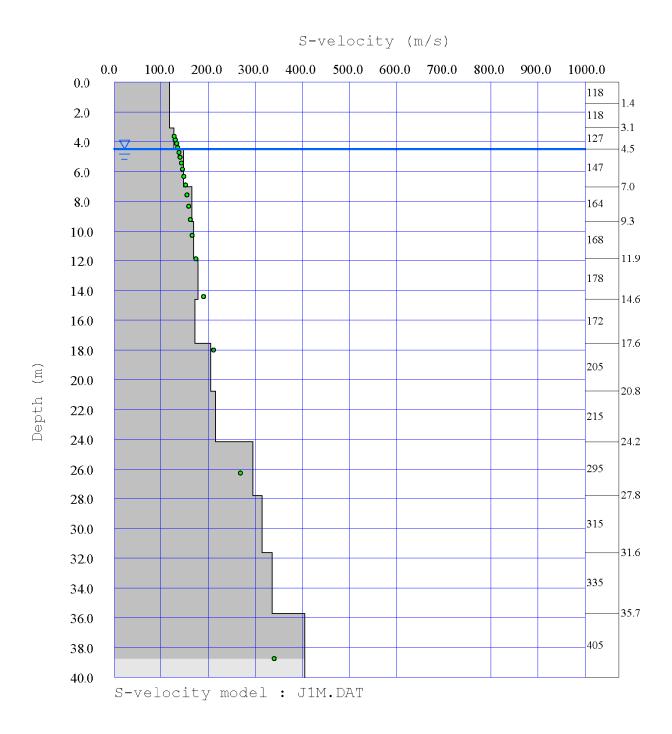



Figura 28: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI INVERSIONE - BASE "J"

10 ELABORAZIONE DATI RILEVATI - BASE "J"

ONDE Vp

L'analisi dei risultati ottenuti dall'indagine di sismica a rifrazione superficiale, ha portato alla classificazione sismostratigrafica dei terreni sottoposti a test investigativo di tipo geometrico e meccanico (profondità dei sismostrati e velocità sismiche longitudinali medie di riferimento).

Le osservazioni ricavate dall'interpretazione dei dati permettono di ricostruire un'immagine sismica del sottosuolo investigato costituita da tre sismostrati con V_{p(media)} rispettivamente pari a 297 m/sec, 1387 m/sec e 1724 m/sec.

Per quanto riguarda la profondità degli orizzonti sismo-stratigrafici si rimanda alla sezione riportata in fig. 24

ONDE Vs

L'analisi dei risultati ottenuti dall'indagine MASW ha portato alla determinazione degli strati e delle velocità delle onde sismiche trasversali (V_s) fino a una profondità effettiva pari a circa 38,50 ml. dal piano campagna.

Dall'analisi delle elaborazioni si evidenzia la presenza dei seguenti livelli:

Vel	Velocità onde Vp e Vs ottenute dall'elaborazione MASW				
Strato	Quota da	Spessore	Vs	V _P	Peso di
	p.c.	dello strato			volume
	[m]	[m]	[m/s]	[m/s]	[kN/m ³]
h1	-1,43	1,43	118	276	13,297
h2	-3,08	1,65	118	276	13,297
h3	-4,50	1,42	127	288	13,338
h4	-7,03	2,53	148	1465	17,422
h5	-9,34	2,31	165	1480	17,471
h6	-11,87	2,53	169	1489	17,497
h7	-14,62	2,75	178	1508	17,559
h8	-17,58	2,96	172	1508	17,559
h9	-20,77	3,19	205	1543	17,668
h10	-24,18	3,41	215	1543	17,668
h11	-27,80	3,62	295	1613	17,885
h12	-31,65	3,85	315	1613	17,885
h13	-35,71	4,06	336	1613	17,885
h14	-48,57	12,86	405	1668	18,054

Al termine della elaborazione si è rilevato riscontrato una convergenza dei valori pari a 1.755618%, come riportato nella tabella sottostante:

Iteration=0 RMS=22.990337 m/s (12.257643%)	Iteration=1 RMS=18.862456 m/s (9.837462%)
Iteration=2 RMS=15.443012 m/s (7.889968%)	Iteration=3 RMS=12.640522 m/s (6.330927%)
Iteration=4 RMS=10.359897 m/s (5.084370%)	Iteration=5 RMS=8.518289 m/s (4.090666%)
Iteration=6 RMS=7.038458 m/s (3.297951%)	Iteration=7 RMS=5.857958 m/s (2.665743%)
Iteration=8 RMS=4.923136 m/s (2.159763%)	Iteration=9 RMS=4.185694 m/s (1.755618%)

Ai sensi del DM 14.01.2008 (GU del 04.02.2008, n. 29 – S.O. n. 30), punto 3.2.2. "Categoria di suolo e condizioni topografiche", il valore della velocità media delle onde sismiche di taglio nei primi 30 metri $(V_{s,30})$ può essere considerato come segue:

	Calcolo V _{s,30} ottenuto dall'elaborazione MASW				
Strato	Quota da p.c.	h _i	V _{s,i}	h _i / V _{s,i}	$\Sigma h_i / V_{s,i}$
	[m]	[m]	[m/s]	[s]	[s]
h1	-1,43	1,43000	118	0,01209	
h2	-3,08	1,65000	118	0,01397	
h3	-4,50	1,42000	127	0,01116	
h4	-7,03	2,53000	148	0,01714	
h5	-9,34	2,31000	165	0,01401	
h6	-11,87	2,53000	169	0,01500	
h7	-14,62	2,75000	178	0,01544	
h8	-17,58	2,96000	172	0,01720	
h9	-20,77	3,19000	205	0,01555	
h10	-24,18	3,41000	215	0,01582	
h11	-27,80	3,62000	295	0,01225	
h12	-30,00	2,20000	315	0,00698	•
h13	-30,00	0,00000	0	0,00000	
h14	-30,00	0,00000	0	0,00000	0,16663
			$V_{s,30}$	180	[m/s]

A Vs. disposizione per ogni chiarimento e/o informazione si porgono distinti saluti.

Vignola, 25/11/2008

Geo-Xpert Italia snc (Dott. Geol. Giorgio Masotti)

Sede Legale: Via di Mezzo, 90 – 41058 VIGNOLA (MO) – ITALY

Telefono +39 059 761644 - Telefax +39 059 779111

Web www.geo-xpert.com ---- Email info@geo-xpert.com

PARTITA I.V.A.: 02740680364 - COD. FISCALE: 02740680364 - C.C.I.A.A. 326926

COMMITTENTE

Dott. Geol. CASTAGNETTI STEFANO

Via Argini sud, 24 43030 BASILICANOVA (PARMA)

TIPOLOGIA DELL'INTERVENTO

DETERMINAZIONE DELLE Vs30 AI FINI DELLA VALUTAZIONE DELLA RISPOSTA SISMICA LOCALE DELLA MICROZONAZIONE SISMICA DI CUI ALLA D.A.L. 112/2007

OGGETTO DELL'ELABORATO

RELAZIONE DI INDAGINE GEOFISICA DI TIPO SISMICO A RIFRAZIONE

COMPARTO REGGIANE

ITALIA
REGIONE: EMILIA ROMAGNA
PROVINCIA: REGGIO EMILIA

CODIFICA GENERALE	ELABORATO			
CODICE INTERNO	LOTTO	SETTORE DI ATTIVITA'	TIPO DOCUMENTO	N. ELABORATO
2480	K-L-M	G	REL	1

VERSIONE	DATA	OGGETTO CONTRACTOR OF THE PROPERTY OF THE PROP
0	16/01/2009	1° EMISSIONE

DATI PROGETTISTA

Dott. Geol. Giorgio Masotti Via di Mezzo, 90 41058 Vignola (MO) – Italy

INDICE

1	PREMESSA	4
2	INQUADRAMENTO GEOGRAFICO	4
3	NORMATIVA D.M. 14/01/2008	7
4	INDAGINI GEOFISICHE DI TIPO SISMICO A RIFRAZIONE	
5	BASE SISMICA "K"	
_		
6	VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "K"	
7	ELABORAZIONE DATI RILEVATI - BASE "K"	23
8	BASE SISMICA "L"	25
9	VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "L"	35
10	ELABORAZIONE DATI RILEVATI - BASE "L"	38
11	BASE SISMICA "M"	40
12	VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "M"	
13	ELABORAZIONE DATI RILEVATI - BASE "M"	53
	INDICE DEGLI ALLEGATI	
Figi	URA 1: ESTRATTO DI CARTA TOPOGRAFICA R.E.R. N. 200-NE "REGGIO EMILIA NORD" E N. 200)-SE
	"REGGIO EMILIA SUD" - SCALA 1:25.000	
	URA 2: ESTRATTO DI IMMAGINE SATELLITARE CON INDICAZIONE DEL LIMITE DI COMPARTO	
	URA 3: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "K"	
	URA 4: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI - BASE "K"ura 5: ANDAMENTO DELLE DROMOCRONE - BASE "K"	
	URA 5: ANDAMENTO DELLE DROMOCRONE - BASE K	
1 10	AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "K"	
Figi	URA 7: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E	
	7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "K"	
Figi	URA 8: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 I	
Eici	13 IN POSIZIONE CENTRALE - BASE "K"ura 9: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 I	
FIG	19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "K"	
Figi	URA 10: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00	,
	ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "K	" 18
Figi	ura 11: SEZIONE INTERPRETATIVA – BASE "K"	19
FIG	URA 12: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "K"	20
FIG	URA 13: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "K"ura 14: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "K"	21
	URA 14: ANDAMENTO DELLE PREQUENZE RILEVATE È DELLA VELOCITÀ DI PASE - BASE I R URA 15: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESI	
	INVERSIONE - BASE "K"	22
Figi	URA 16: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "L"	26
	URA 17: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI – BASE "L"	
	URA 18: ANDAMENTO DELLE DROMOCRONE - BASE "L"	28
FIG	URA 19: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "L'	" 20
Figi	URA 20: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6	
. 10	7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "L"	
Figi	URA 21: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12	2 E
_	NR. 13 IN POSIZIONE CENTRALE - BASE "L"	31
Figi	URA 22: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18	} E
Fici	NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "L"ura 23: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00	32
1 10	ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "L'	, 23

FIGURA 24: SEZIONE INTERPRETATIVA – BASE "L"	34
FIGURA 25: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "L"	35
FIGURA 26: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "L"	
FIGURA 27: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "L".	36
FIGURA 28: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESS	
INVERSIONE - BASE "L"	37
FIGURA 29: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA - BASE "M"	
FIGURA 30: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI – BASE "M"	42
FIGURA 31: ANDAMENTO DELLE DROMOCRONE - BASE "M"	
FIGURA 32: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00	
ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "M"	44
FIGURA 33: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E	NR.
7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "M"	45
FIGURA 34: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12	Ε
NR. 13 IN POSIZIONE CENTRALE - BASE "M"	46
FIGURA 35: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18	E
NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "M"	47
FIGURA 36: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00	
ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "M"	
FIGURA 37: SEZIONE INTERPRETATIVA – BASE "M"	
FIGURA 38: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "M"	
FIGURA 39: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "M"	51
FIGURA 40: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "M".	51
FIGURA 41: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESS	O DI
INVERSIONE - BASE "M"	52

1 PREMESSA

Come richiesto dal tecnico incaricato per gli studi geologici-geotecnici, il sottoscritto:

Dott. Giorgio Masotti, Geologo libero professionista, regolarmente iscritto all'Ordine dei Geologi della Regione
 Emilia Romagna con il numero 588, in qualità di consulente tecnico della ditta Geo-Xpert Italia – Servizi –
 Tecnologie e Ambiente snc, con sede in Vignola (MO) – Via di Mezzo, 90,

ha provveduto alla stesura della presente relazione, finalizzata alla elaborazione delle indagini geofisiche effettuate con il metodo sismico a rifrazione ai fini della determinazione della caratterizzazione sismica del terreno di fondazione ai sensi del testo unitario "Norme Tecniche per le Costruzioni" (D.M. 14.01.2008).

L'area interessata dall'indagine geologico-geotecnica si trova in comune di Reggio Emilia, Comparto Reggiane.

Allo scopo di determinare le caratteristiche litologiche e stratigrafiche dei terreni presenti, è stata condotta un'indagine diretta in sito di tipo sismico a rifrazione costituita da nr. 3 basi sismiche che sono state eseguite in data 06/11/2008 e 12/01/2009 con determinazione sperimentale mediante inversione (Metodo MASW) del valore di V_{s.30}.

2 INQUADRAMENTO GEOGRAFICO

La zona oggetto d'intervento si colloca nell'ambito del territorio comunale di REGGIO EMILIA, e risulta compresa all'interno della documentazione cartografica sotto riportata:

Cartografia Regionale:

- CARTA TOPOGRAFICA n. 200-NE denominata "REGGIO EMILIA NORD" Scala 1:25.000
- CARTA TOPOGRAFICA n. 200-SE denominata "REGGIO EMILIA SUD" Scala 1:25.000
- SEZIONE R.E.R. n. 200080 "REGGIO EMILIA" scala 1:10.000
- SEZIONE R.E.R. n. 200120 "REGGIO EMILIA SUD EST" scala 1:10.000

Figura 1: ESTRATTO DI CARTA TOPOGRAFICA R.E.R. n. 200-NE "REGGIO EMILIA NORD" e n. 200-SE "REGGIO EMILIA SUD" - SCALA 1:25.000

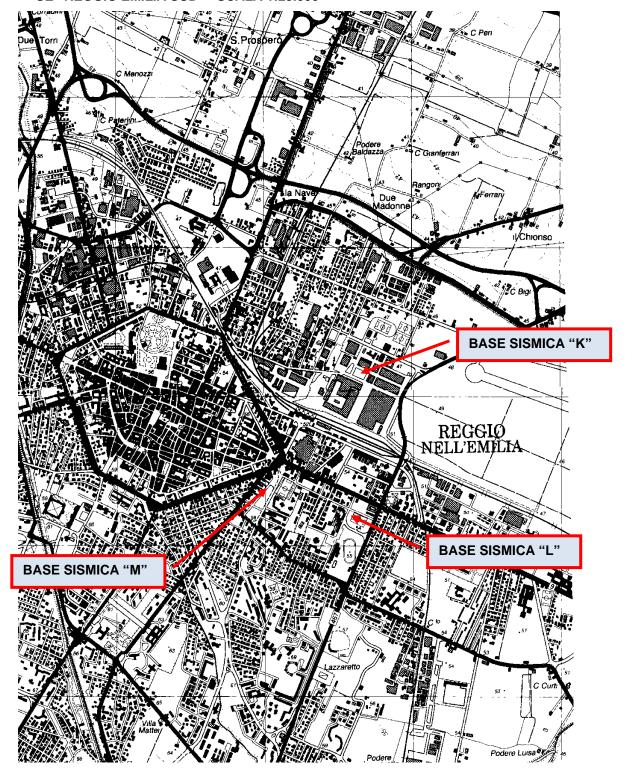


Figura 2: ESTRATTO DI IMMAGINE SATELLITARE CON INDICAZIONE DEL LIMITE DI COMPARTO

3 NORMATIVA D.M. 14/01/2008

Le "Norme tecniche per le costruzioni" definiscono che, ai fini della valutazione della azione sismica di progetto (punto 3.2.2. "Categoria di suolo e condizioni topografiche"), deve essere valutata l'influenza delle condizioni litologiche, morfologiche e topografiche locali sulle caratteristiche del moto del suolo in superficie, mediante studi specifici di risposta sismica locale.

In mancanza di tali studi si può utilizzare una classificazione che riguardi i terreni compresi tra il piano di imposta delle fondazioni degli edifici ed il sub-strato rigido di riferimento con velocità delle onde di taglio $V_s > 800$ m/s (bedrock) o comunque un sub-strato commisurato alla estensione ed importanza dell'opera.

La classificazione si effettua in base ai valori della velocità equivalente V_{s,30} di propagazione delle onde di taglio entro i primi 30 metri di profondità.

Nei casi in cui tale determinazione della velocità non sia disponibile, la classificazione può essere eseguita in base ai valori del numero equivalente di colpi della prova penetrometrica dinamica (Standard Penetration Test) N_{SPT,30} nei terreni prevalentemente a grana grossa e della resistenza non drenata equivalente c_{u,30} nei terreni prevalentemente a grana fina.

La velocità equivalente delle onde di taglio V_{s,30} è definita dall'espressione

$$V_{s,30} = \frac{30}{\sum_{t=1,N} \frac{ht}{V_{s,t}}} \quad [m/_s]$$

la resistenza penetrometrica dinamica equivalente N_{SPT,30} è definita dall'espressione

$$N_{SPT,30} = \frac{\sum_{t=1,M} h_t}{\sum_{t=1,M} \frac{h_t}{N_{SPT,t}}}$$

la resistenza non drenata equivalente cu,30 è definita dall'espressione

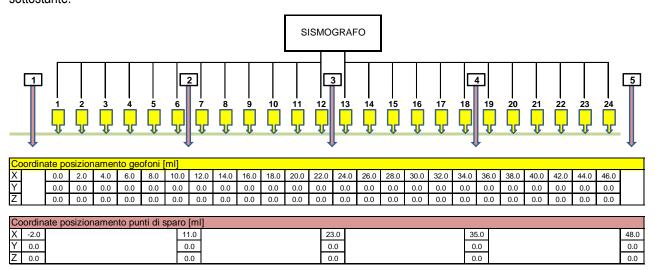
$$C_{u, 20} = \frac{\sum_{t=1, k} h_t}{\sum_{t=1, k} \frac{h_t}{C_{u, t}}}$$

dove h_i , $V_{s,i}$, $N_{SPT,i}$ e $c_{u,i}$ sono rispettivamente lo spessore, la velocità delle onde di taglio V_s , il numero di colpi N_{SPT} e la resistenza non drenata c_u nell'i-esimo strato compreso nei primi 30 metri di profondità.

Le categorie di sottosuolo di riferimento sono:

Categoria	Descrizione
Α	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s,
	eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto
	consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà
	meccaniche con la profondità e da valori di Vs,30 compresi tra 360 m/s e 800 m/s (ovvero NSPT,30 >
	50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina).
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti,
	con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche
	con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 <50 nei
	terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente
	consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà
	meccaniche con la profondità e da valori di Vs,30 inferiori a 180 m/s (ovvero NSPT,30 < 15 nei terreni a
	grana grossa e cu,30 <70 kPa nei terreni a grana fina).
Е	Terreni dei sottosuoli di tipo C o D con spessore non superiore ai 20 m, posti sul substrato di
	riferimento (con Vs > 800 m/s).
L	

La normativa prevede due categorie aggiuntive di sottosuolo per le quali è necessario predisporre specifiche analisi per la definizione delle azioni sismiche, particolarmente nei casi in cui la presenza di terreni suscettibili di liquefazione e/o di argille d'elevata sensibilità possa comportare fenomeni di collasso del terreno:


Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di Vs,30 < 100 m/s (ovvero 10 < cu,30 < 20 kPa), che
	includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono
	almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili a liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo
	non classificabile nei tipi precedenti.

4 INDAGINI GEOFISICHE DI TIPO SISMICO A RIFRAZIONE

Al fine di determinare le caratteristiche geotecniche dei terreni del comparto urbanistico di studio, sono state eseguite in data 06/11/2008 e in data 12/01/2009 nr. 3 basi sismiche a rifrazione con sistema di acquisizione 24 canali con energizzazione del terreno mediante una mazza battente da Kg. 9 su una piastra di battuta in alluminio.

Per la disposizione dei trasduttori velocimetrici (geofoni) sul sito oggetto di indagine, è stato definito un allineamento mantenendo una equidistanza ripetitiva lungo tutta la tratta della base sismica, come evidenziato nello schema sottostante.

Caratteristiche geometriche dello stendimento sismico

Lunghezza linea sismica	46,0m	Spazio intergeofonico	2,0m
Numero di punti di energizzazione	5	Numero di trasduttori velocimetri	24

Strumentazione e impostazioni di registrazione

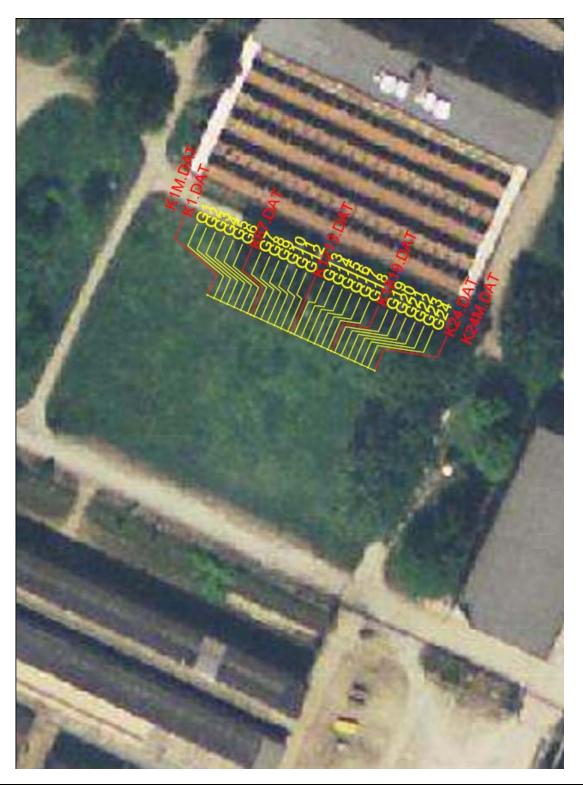
Modello strumento di acquisizione Risoluzione di campionamento	PASI 16S24 16 bit
Frequenza di campionamento	125 μs
Geofoni verticali con frequenza di pari a 4,5 Hz	24
Tempo di acquisizione	256 ms

Per quanto riguarda l'inizio della registrazione è stato utilizzato un geofono "starter" posizionato in aderenza alla piastra di battuta e collegato allo strumento in modo da garantire uno scarto di errore sul "Tempo Zero" non superiore a 1 msec.

Per la base sismica sono stati effettuati nr. 5 punti di energizzazione lungo lo stendimento sismico:

1a energizzazione posta a ml. 2.00 verso l'esterno rispetto al geofono nr. 1 (estremo sinistro)

2a energizzazione posta tra i geofoni nr. 6 e nr. 7 (intermedio sinistro)


3a energizzazione posta tra i geofoni nr. 12 e nr. 13 (centrale)

4a energizzazione posta tra i geofoni nr. 18 e nr. 19 (intermedio destro)

5a energizzazione posta a ml. 2.00 verso l'esterno rispetto al geofono nr. 24 (estremo destro)

5 BASE SISMICA "K"

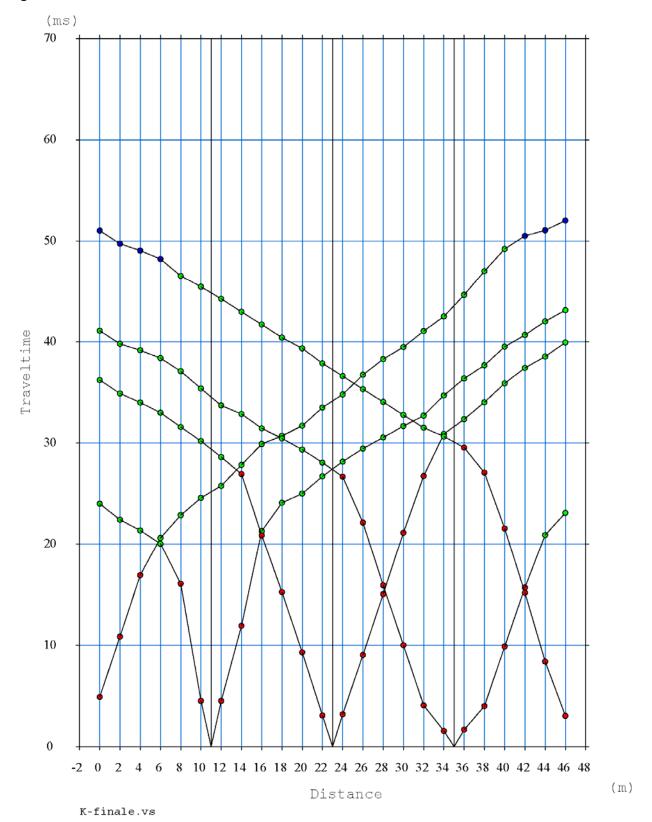
SCALA 1:1.000

Figura 3: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "K"

Figura 4: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI - BASE "K"

File Reference		
1	K1.DAT	
2	K67.DAT	
3	K1213.DAT	
4	K1819.DAT	
5	K24.DAT	
MASW	K24M.DAT	

SHOOT POINTS COORDINATE						
SP	Elev [m]	X-loc [m]	Y-Loc [m]	Depth [m]		
1	0,00	-2,00	0,00	0,00		
2	0,00	11,00	0,00	0,00		
3	0,00	23,00	0,00	0,00		
4	0,00	35,00	0,00	0,00		
5	0,00	48,00	0,00	0,00		


FIRST BREAKS ARRIVAL								
Geo	Z [m]	X-loc [m]	Y-Loc [m]	SP 1 [mS]	SP 2 [mS]	SP 3 [mS]	SP 4 [mS]	SP 5 [mS]
1	0,00	0,00	0,00	4,92	24,00	36,24	41,11	51,06
2	0,00	2,00	0,00	10,84	22,44	34,92	39,81	49,77
3	0,00	4,00	0,00	16,92	21,36	34,02	39,18	49,08
4	0,00	6,00	0,00	20,64	20,04	33,00	38,41	48,24
5	0,00	8,00	0,00	22,88	16,08	31,60	37,12	46,55
6	0,00	10,00	0,00	24,59	4,52	30,20	35,40	45,48
7	0,00	12,00	0,00	25,78	4,52	28,64	33,72	44,26
8	0,00	14,00	0,00	27,84	11,91	26,96	32,88	42,99
9	0,00	16,00	0,00	29,92	21,32	20,88	31,48	41,72
10	0,00	18,00	0,00	30,72	24,12	15,24	30,48	40,44
11	0,00	20,00	0,00	31,73	25,01	9,32	29,36	39,36
12	0,00	22,00	0,00	33,55	26,72	3,08	28,08	37,89
13	0,00	24,00	0,00	34,81	28,17	3,20	26,68	36,62
14	0,00	26,00	0,00	36,75	29,45	9,04	22,16	35,35
15	0,00	28,00	0,00	38,31	30,57	15,05	15,92	34,07
16	0,00	30,00	0,00	39,50	31,70	21,16	10,00	32,80
17	0,00	32,00	0,00	41,08	32,72	26,76	4,08	31,53
18	0,00	34,00	0,00	42,52	34,72	30,92	1,56	30,66
19	0,00	36,00	0,00	44,66	36,40	32,36	1,69	29,58
20	0,00	38,00	0,00	47,04	37,68	34,04	4,03	27,08
21	0,00	40,00	0,00	49,24	39,52	35,92	9,89	21,56
22	0,00	42,00	0,00	50,52	40,68	37,44	15,71	15,18
23	0,00	44,00	0,00	51,08	42,05	38,57	20,91	8,40
24	0,00	46,00	0,00	52,05	43,14	39,95	23,11	3,06

LAYERS DEPTH							
Geo	Geo X-loc [m] Layer 2 [m]		Layer 3 [m]	Layer 4 [m]	Layer 5 [m]		
1	0,00	2,73	8,14	0,00	0,00		
2	2,00	2,87	8,21	0,00	0,00		
3	4,00	3,01	8,21	0,00	0,00		
4	6,00	3,14	8,45	0,00	0,00		
5	8,00	3,23	8,39	0,00	0,00		
6	10,00	3,28	8,51	0,00	0,00		
7	12,00	3,37	8,71	0,00	0,00		
8	14,00	3,50	8,80	0,00	0,00		
9	16,00	3,62	8,88	0,00	0,00		
10	18,00	3,70	8,95	0,00	0,00		
11	20,00	3,75	9,00	0,00	0,00		
12	22,00	3,78	9,04	0,00	0,00		
13	24,00	3,78	9,08	0,00	0,00		
14	26,00	3,79	9,08	0,00	0,00		
15	28,00	3,78	9,09	0,00	0,00		
16	30,00	3,76	9,10	0,00	0,00		
17	32,00	3,79	9,12	0,00	0,00		
18	34,00	3,83	9,14	0,00	0,00		
19	36,00	3,90	9,22	0,00	0,00		
20	38,00	3,98	9,33	0,00	0,00		
21	40,00	3,98	9,36	0,00	0,00		
22	42,00	3,78	9,36	0,00	0,00		
23	44,00	3,55	9,61	0,00	0,00		
24	46,00	3,43	9,79	0,00	0,00		

LAYERS VELOCITY				
Layer	Velocity [m/s]			
1	366			
2	1364			
3	1473			
4				
5				

Figura 5: ANDAMENTO DELLE DROMOCRONE - BASE "K"

13 di 54

Figura 6: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "K"

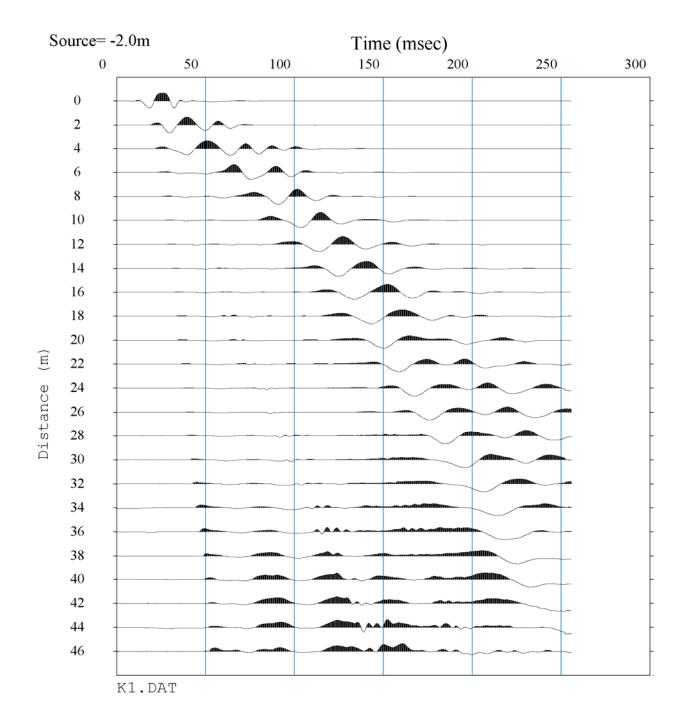


Figura 7: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR. 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "K"

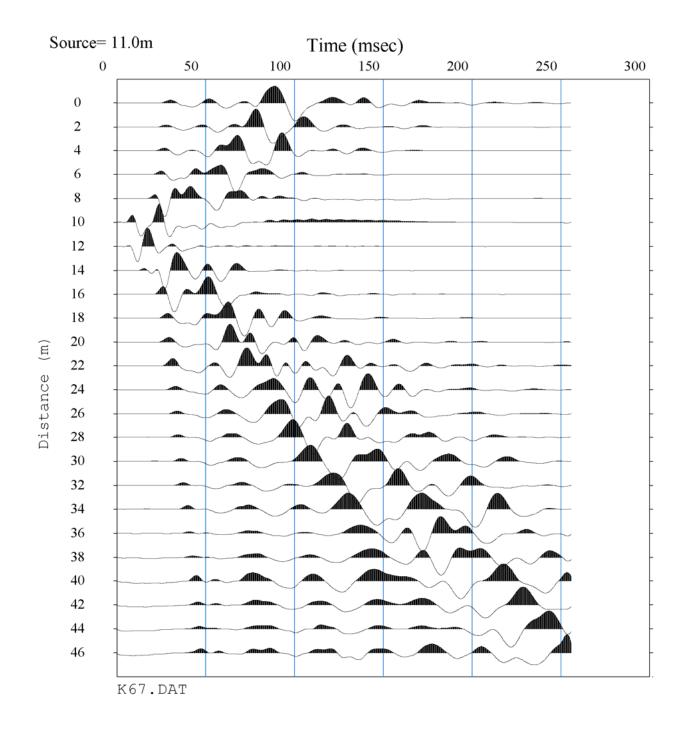


Figura 8: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR. 13 IN POSIZIONE CENTRALE - BASE "K"

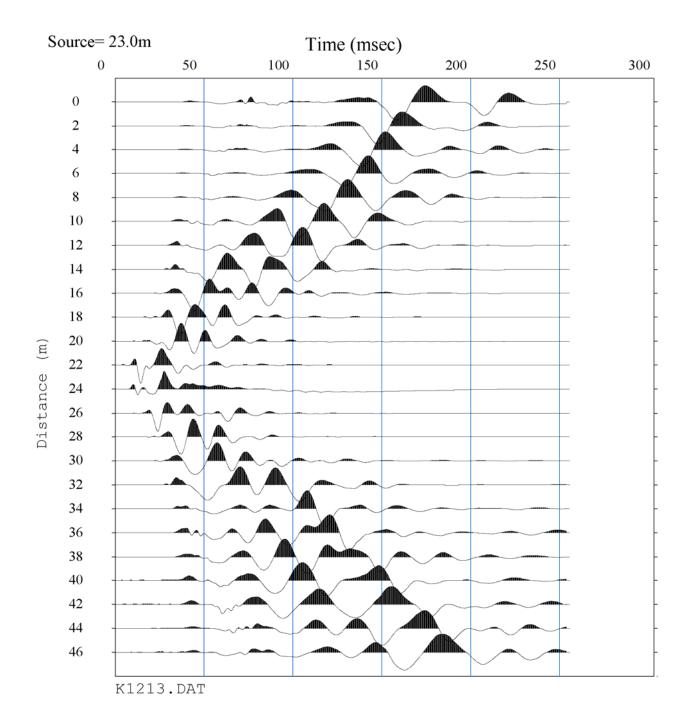


Figura 9: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "K"

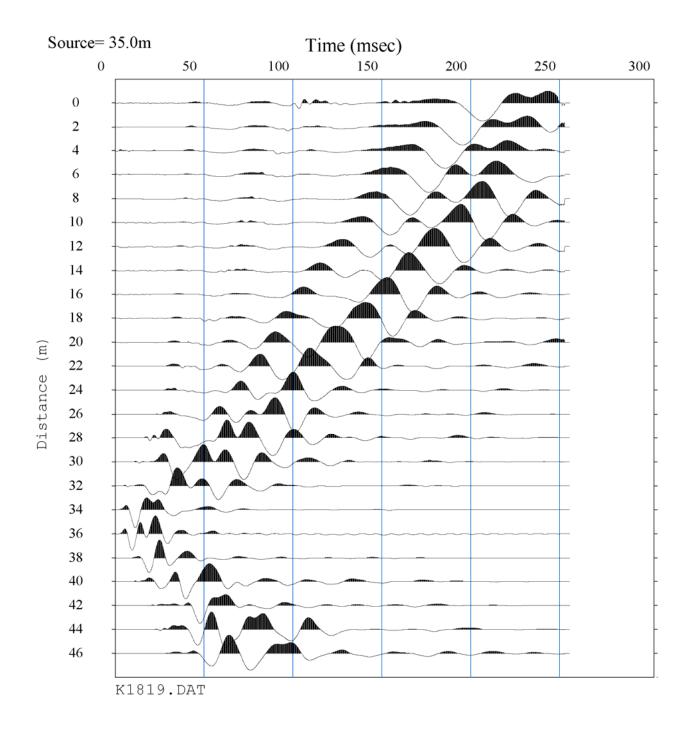


Figura 10: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "K"

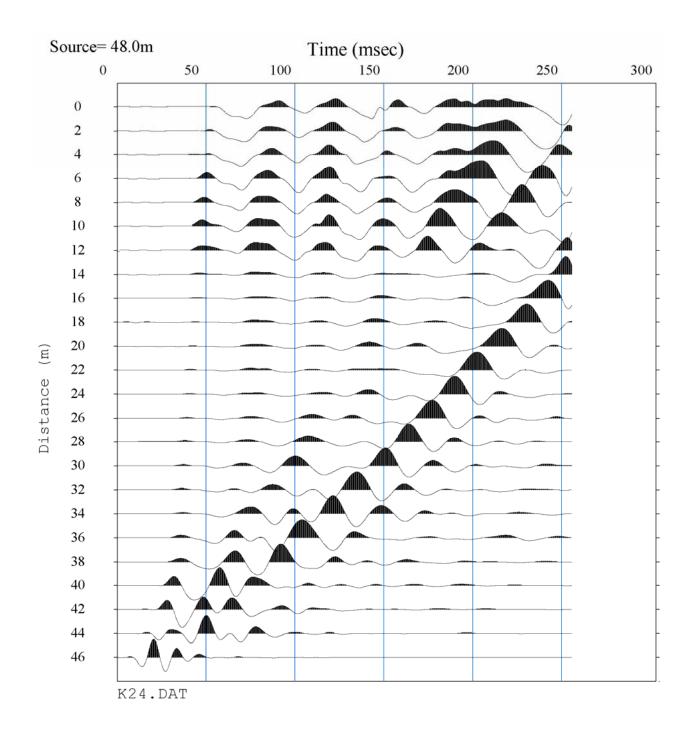
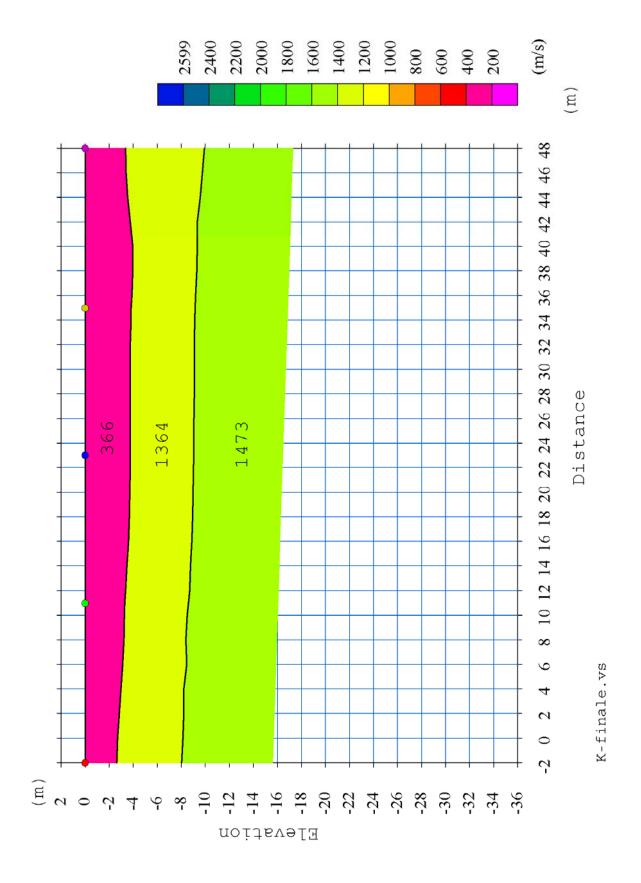



Figura 11: SEZIONE INTERPRETATIVA – BASE "K"

6 VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "K"

La determinazione della velocità delle onde sismiche di taglio (V_s) è stata effettuata mediante elaborazione con il metodo MASW, allo scopo di determinare la categoria sismica del terreno (A, B, C, D, E, S1, S2) secondo quanto indicato dalla Nuova Normativa Sismica (Ordinanza P.C.M. 2003 e s.m.i.) e dagli Eurocodici 7 e 8.

Per l'elaborazione MASW si è tenuta in considerazione la traccia sismica rilevata a seguito dell'energizzazione effettuata a ml. 2,00 dal geofono nr. 24 in posizione di estrema destra rispetto alla base sismica.

L'elaborazione ha riguardato l'intero campionamento della registrazione avente durata 2048 mS e una frequenza di campionamento di 500 microS. Le misure del moto in superficie sono state elaborate tramite una doppia trasformata del campo d'onda (trasformate Slant-Stack e di Fourier), con la quale viene rappresentato il segnale nel dominio ω-p (frequenza angolare - slowness), in modo da identificare la curva di dispersione sperimentale delle onde di Rayleigh. Successivamente si procede con la determinazione del profilo di velocità delle onde di taglio V_s attraverso un processo di inversione delle stesse curve di dispersione.

Il metodo consiste nell'assumere un profilo di velocità iniziale di primo tentativo e attraverso un opportuno software si calcola la velocità di fase apparente delle onde di Rayleigh corrispondente al profilo stratigrafico di velocità ipotizzato (curva di dispersione teorica). Dal confronto tra la curva di dispersione *sperimentale* e la curva di dispersione *teorica* vengono modificati gli spessori e le velocità del modello per minimizzare la distanza tra le due curve.

Il processo di identificazione si conclude quando si raggiunge la sovrapposizione ottimale fra le due curve, quella *sperimentale* e quella *teorica*.

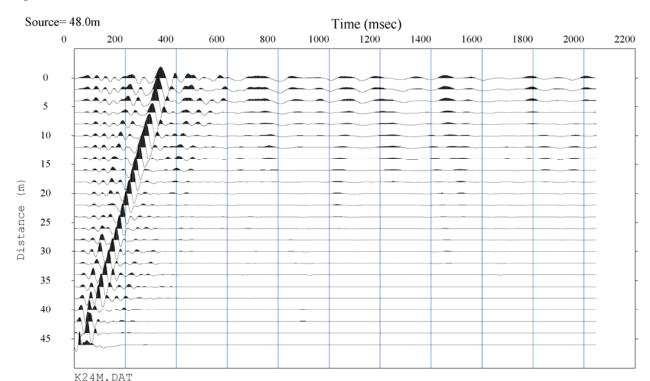


Figura 12: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "K"

Figura 13: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "K"

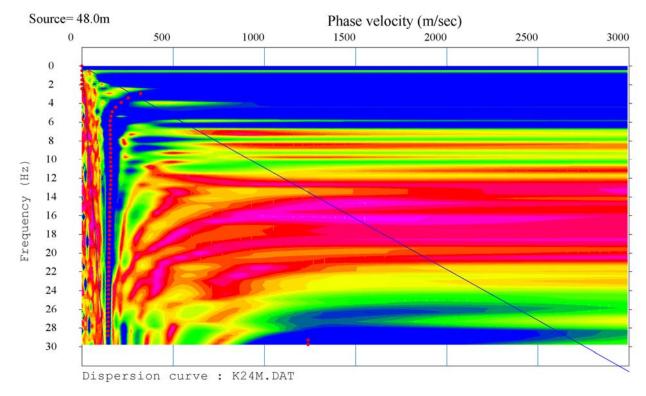


Figura 14: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "K"

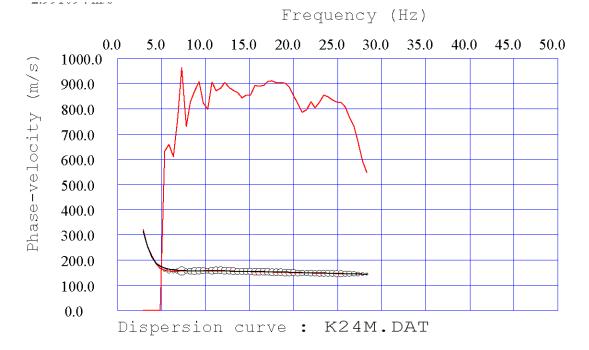
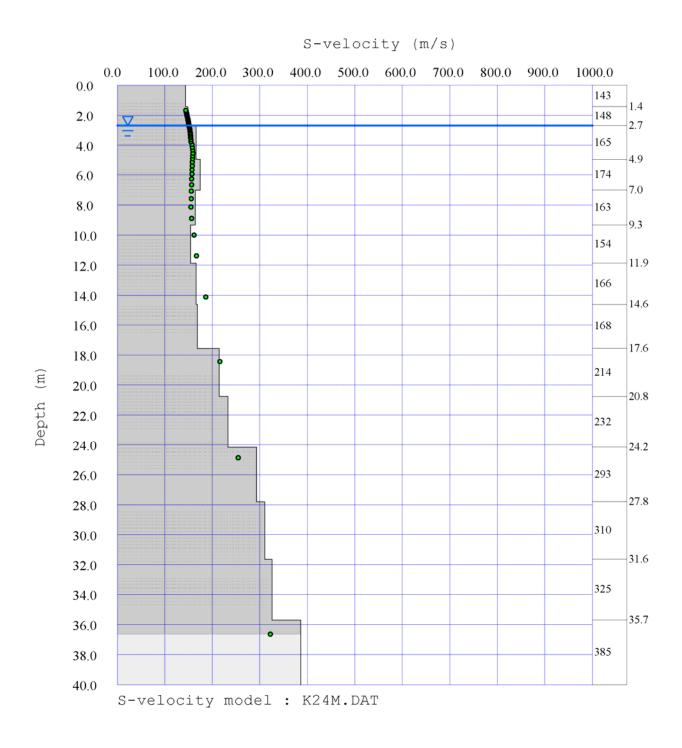



Figura 15: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI INVERSIONE - BASE "K"

7 ELABORAZIONE DATI RILEVATI - BASE "K"

ONDE Vp

L'analisi dei risultati ottenuti dall'indagine di sismica a rifrazione superficiale, ha portato alla classificazione sismostratigrafica dei terreni sottoposti a test investigativo di tipo geometrico e meccanico (profondità dei sismostrati e velocità sismiche longitudinali medie di riferimento).

Le osservazioni ricavate dall'interpretazione dei dati permettono di ricostruire un'immagine sismica del sottosuolo investigato costituita da tre sismostrati con $V_{p(media)}$ rispettivamente pari a 366 m/sec, 1364 m/sec e 1473 m/sec.

Per quanto riguarda la profondità degli orizzonti sismo-stratigrafici si rimanda alla sezione riportata in fig. 11.

ONDE Vs

L'analisi dei risultati ottenuti dall'indagine MASW ha portato alla determinazione degli strati e delle velocità delle onde sismiche trasversali (V_s) fino a una profondità effettiva pari a circa 36,50 ml. dal piano campagna.

Dall'analisi delle elaborazioni si evidenzia la presenza dei seguenti livelli:

Vel	Velocità onde Vp e Vs ottenute dall'elaborazione MASW							
Strato	Quota da	Spessore	Vs	V _P	Peso di			
	p.c.	dello strato			volume			
	[m]	[m]	[m/s]	[m/s]	[kN/m³]			
h1	-1,43	1,43	143	312	13,431			
h2	-2,70	1,27	149	320	13,462			
h3	-4,95	2,25	166	1477	17,461			
h4	-7,03	2,08	175	1479	17,465			
h5	-9,34	2,31	164	1477	17,459			
h6	-11,87	2,53	154	1487	17,491			
h7	-14,62	2,75	166	1513	17,574			
h8	-17,58	2,96	168	1513	17,574			
h9	-20,77	3,19	215	1549	17,687			
h10	-24,18	3,41	233	1549	17,687			
h11	-27,80	3,62	293	1596	17,832			
h12	-31,65	3,85	310	1596	17,832			
h13	-35,71	4,06	326	1596	17,832			
h14	-48,57	12,86	386	1647	17,991			

Al termine della elaborazione si è rilevato riscontrato una convergenza dei valori pari a 1.386292%, come riportato nella tabella sottostante:

Iteration=0 RMS=14.685406 m/s (6.667939%)	Iteration=1 RMS=12.055246 m/s (5.333420%)
Iteration=2 RMS=9.905222 m/s (4.262135%)	Iteration=3 RMS=8.172220 m/s (3.421067%)
Iteration=4 RMS=6.785575 m/s (2.791689%)	Iteration=5 RMS=5.689612 m/s (2.320392%)
Iteration=6 RMS=4.830854 m/s (1.977424%)	Iteration=7 RMS=4.165925 m/s (1.727821%)
Iteration=8 RMS=3.657692 m/s (1.535715%)	Iteration=9 RMS=3.274821 m/s (1.386292%)

Ai sensi del DM 14.01.2008 (GU del 04.02.2008, n. 29 – S.O. n. 30), punto 3.2.2. "Categoria di suolo e condizioni topografiche", il valore della velocità media delle onde sismiche di taglio nei primi 30 metri $(V_{s,30})$ può essere considerato come segue:

	Calcolo V _S	, ₃₀ ottenuto d	dall'elaborazi	one MASW	
Strato	Quota da p.c.	h _i	V _{s,i}	h _i / V _{s,i}	Σ h _i / V _{s,i}
	[m]	[m]	[m/s]	[s]	[s]
h1	-1,43	1,43000	143	0,00998	•
h2	-2,70	1,27000	149	0,00854	
h3	-4,95	2,25000	166	0,01356	
h4	-7,03	2,08000	175	0,01191	
h5	-9,34	2,31000	164	0,01409	
h6	-11,87	2,53000	154	0,01642	
h7	-14,62	2,75000	166	0,01656	
h8	-17,58	2,96000	168	0,01759	
h9	-20,77	3,19000	215	0,01487	
h10	-24,18	3,41000	233	0,01464	
h11	-27,80	3,62000	293	0,01234	
h12	-30,00	2,20000	310	0,00709	•
h13	-30,00	0,00000	0	0,00000	V
h14	-30,00	0,00000	0	0,00000	0,15760
			V _{s,30}	190	[m/s]

8 BASE SISMICA "L"

SCALA 1:1.000

Figura 16: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "L"

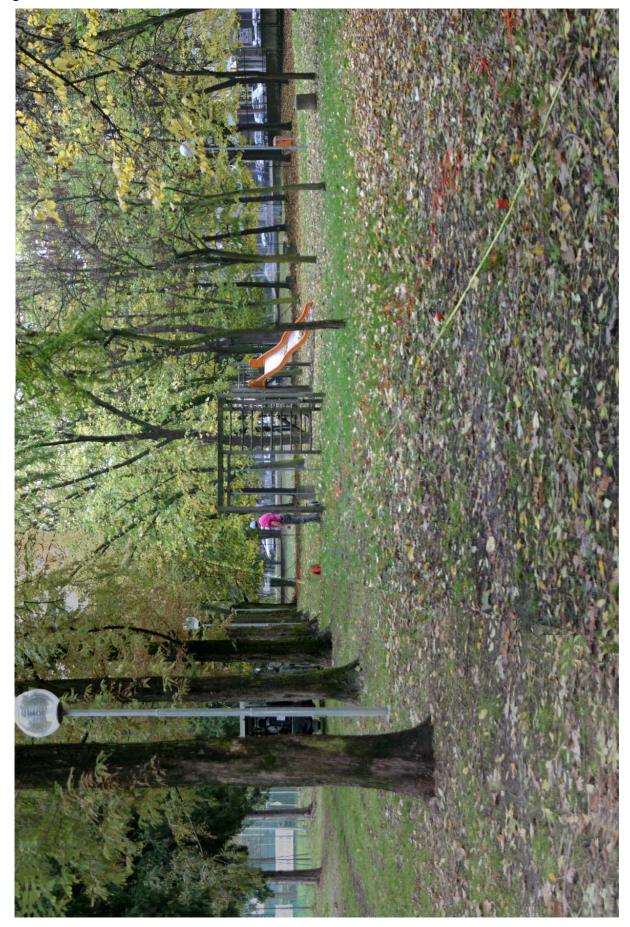


Figura 17: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI – BASE "L"

File Reference				
1	L1.DAT			
2	L67.DAT			
3	L1213.DAT			
4	L1819.DAT			
5	L24.DAT			
MASW	L24M.DAT			

SHOOT POINTS COORDINATE							
SP	Elev [m] X-loc [m] Y-Loc [m]		Depth [m]				
1	0.00	-2.00	0.00	0.00			
2	0.00	11.00	0.00	0.00			
3	0.00	23.00	0.00	0.00			
4	0.00	35.00	0.00	0.00			
5	0.00	48.00	0.00	0.00			

	FIRST BREAKS ARRIVAL							
Geo	Z [m]	X-loc [m]	Y-Loc [m]	SP 1 [mS]	SP 2 [mS]	SP 3 [mS]	SP 4 [mS]	SP 5 [mS]
1	0.00	0.00	0.00	4.64	23.84	35.00	41.43	46.77
2	0.00	2.00	0.00	10.38	21.96	34.12	40.72	46.21
3	0.00	4.00	0.00	16.36	19.12	32.88	39.20	45.76
4	0.00	6.00	0.00	21.88	13.32	30.84	38.24	45.17
5	0.00	8.00	0.00	24.88	7.36	29.44	36.36	44.19
6	0.00	10.00	0.00	26.57	1.60	26.89	34.68	43.21
7	0.00	12.00	0.00	27.92	1.44	25.32	33.08	42.23
8	0.00	14.00	0.00	29.88	7.12	23.20	32.08	41.26
9	0.00	16.00	0.00	31.56	13.32	21.08	31.04	40.28
10	0.00	18.00	0.00	33.60	19.04	18.92	29.96	39.30
11	0.00	20.00	0.00	35.92	22.52	13.32	28.16	38.32
12	0.00	22.00	0.00	36.72	24.80	1.32	26.76	37.34
13	0.00	24.00	0.00	38.04	26.76	1.68	24.72	35.56
14	0.00	26.00	0.00	39.12	28.64	15.28	21.53	33.52
15	0.00	28.00	0.00	40.36	29.68	19.72	20.44	32.00
16	0.00	30.00	0.00	41.76	31.28	21.96	17.88	30.84
17	0.00	32.00	0.00	42.48	32.36	24.00	12.36	30.04
18	0.00	34.00	0.00	43.12	33.68	25.60	3.36	28.28
19	0.00	36.00	0.00	44.72	35.04	27.48	3.28	27.28
20	0.00	38.00	0.00	45.52	35.64	28.39	11.92	25.60
21	0.00	40.00	0.00	46.48	36.16	30.21	17.88	21.32
22	0.00	42.00	0.00	46.92	37.44	32.00	21.44	12.68
23	0.00	44.00	0.00	47.28	38.48	32.80	22.84	7.93
24	0.00	46.00	0.00	47.64	38.92	33.57	24.64	4.18

LAYERS DEPTH						
Geo	X-loc [m]	Layer 2 [m]	Layer 3 [m]	Layer 4 [m]	Layer 5 [m]	
1	0.00	3.26	12.10	0.00	0.00	
2	2.00	3.25	12.10	0.00	0.00	
3	4.00	3.31	12.00	0.00	0.00	
4	6.00	3.23	11.73	0.00	0.00	
5	8.00	3.09	11.49	0.00	0.00	
6	10.00	2.99	11.29	0.00	0.00	
7	12.00	2.94	11.10	0.00	0.00	
8	14.00	2.98	11.09	0.00	0.00	
9	16.00	3.10	11.12	0.00	0.00	
10	18.00	3.23	11.17	0.00	0.00	
11	20.00	3.31	11.21	0.00	0.00	
12	22.00	3.35	11.23	0.00	0.00	
13	24.00	3.30	11.22	0.00	0.00	
14	26.00	3.21	11.21	0.00	0.00	
15	28.00	3.18	11.19	0.00	0.00	
16	30.00	3.18	11.18	0.00	0.00	
17	32.00	3.17	11.17	0.00	0.00	
18	34.00	3.15	11.16	0.00	0.00	
19	36.00	3.12	11.05	0.00	0.00	
20	38.00	3.05	10.84	0.00	0.00	
21	40.00	3.01	10.51	0.00	0.00	
22	42.00	3.00	10.13	0.00	0.00	
23	44.00	3.01	9.90	0.00	0.00	
24	46.00	3.01	9.90	0.00	0.00	

LAYERS VELOCITY					
Layer	Velocity [m/s]				
1	349				
2	1419				
3	2407				
4					
5					

Figura 18: ANDAMENTO DELLE DROMOCRONE - BASE "L"

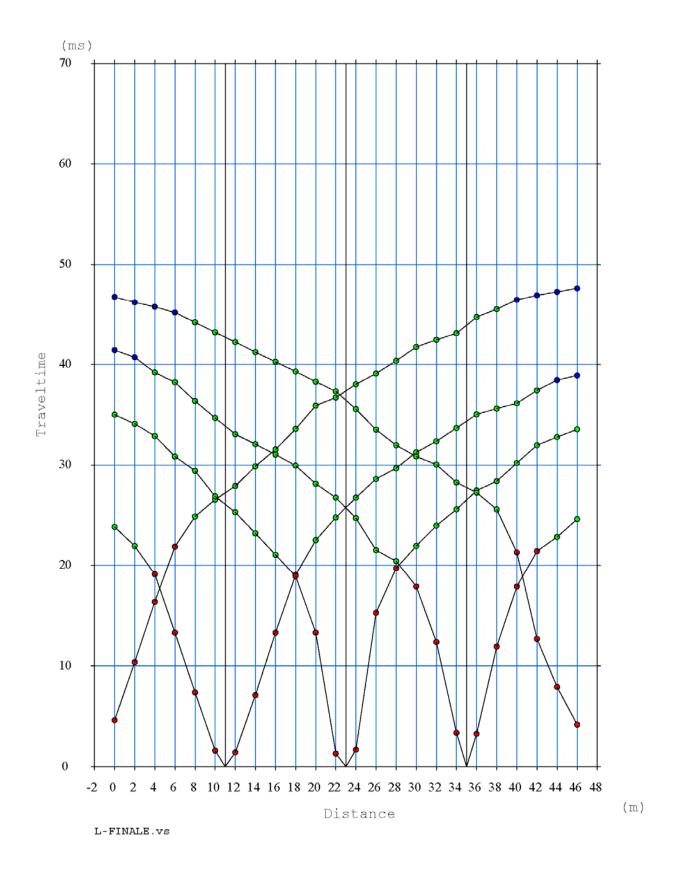


Figura 19: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "L"

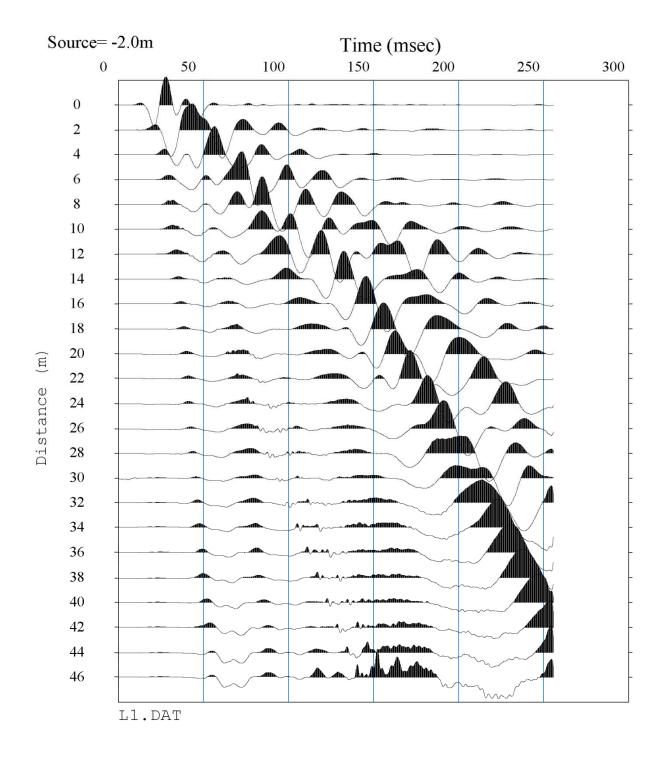


Figura 20: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR. 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "L"

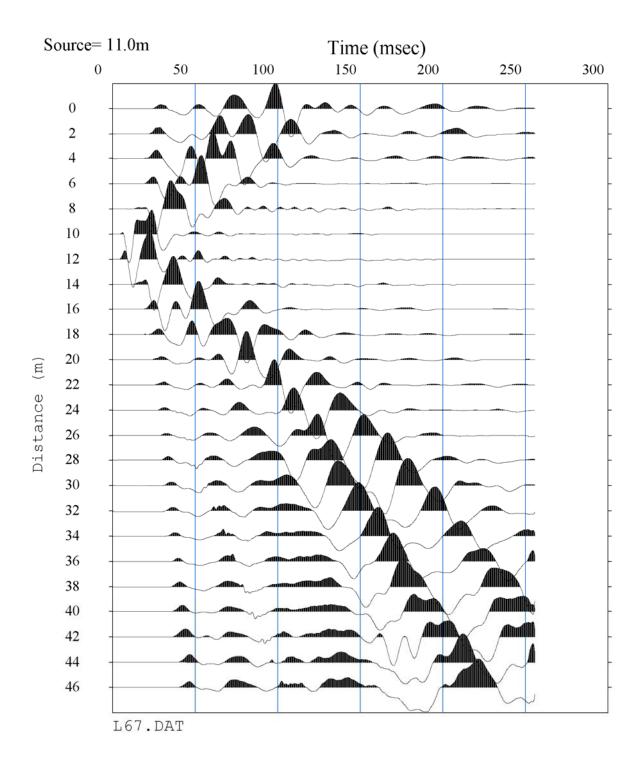


Figura 21: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR. 13 IN POSIZIONE CENTRALE - BASE "L"

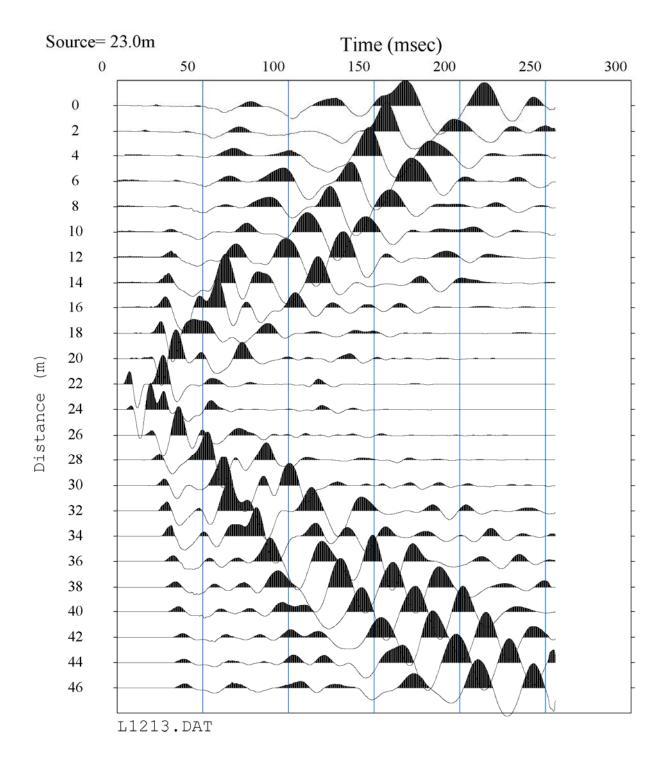


Figura 22: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "L"

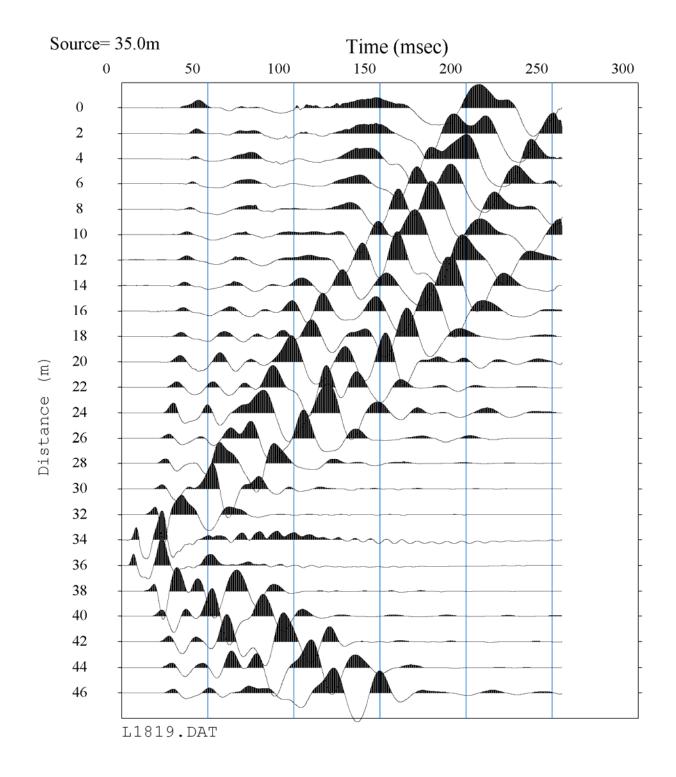


Figura 23: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "L"

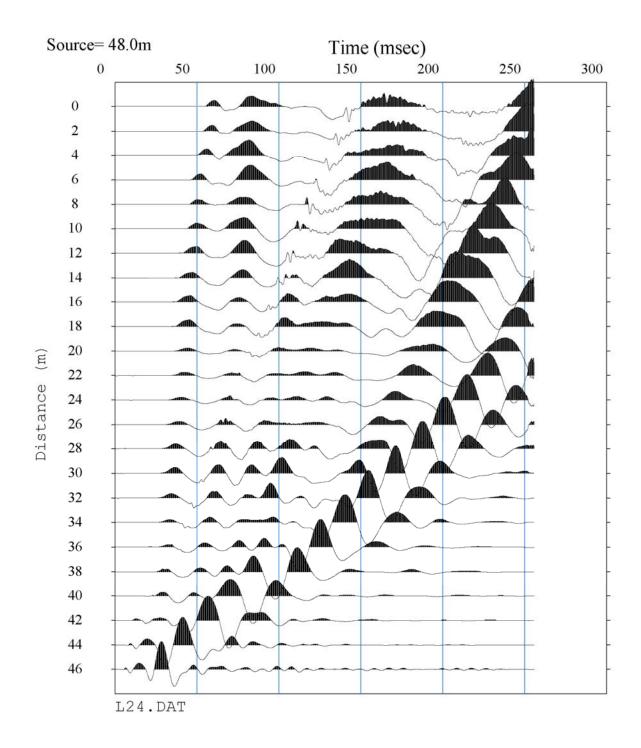
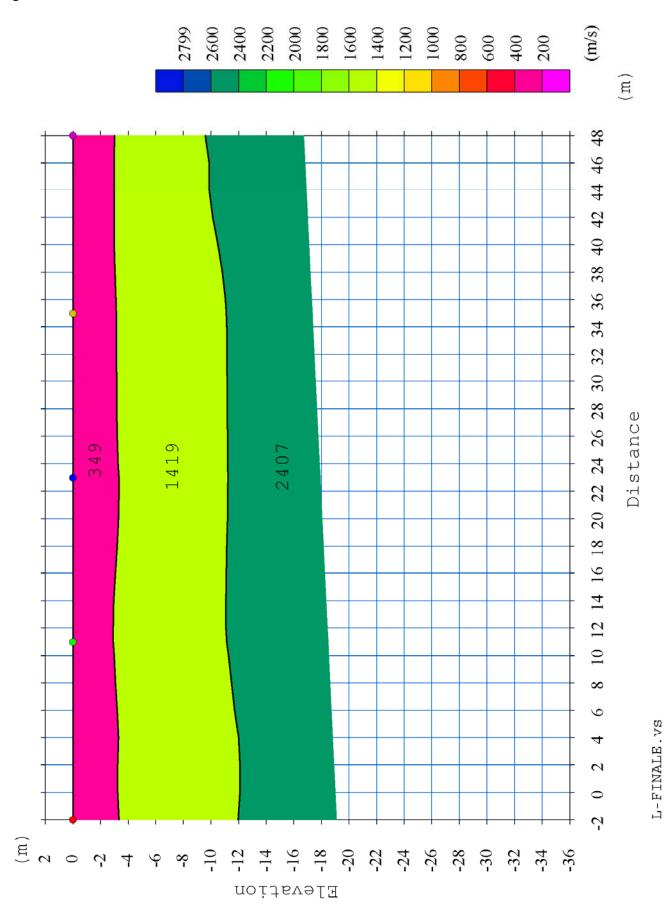



Figura 24: SEZIONE INTERPRETATIVA - BASE "L"

9 VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "L"

La determinazione della velocità delle onde sismiche di taglio (V_s) è stata effettuata mediante elaborazione con il metodo MASW, allo scopo di determinare la categoria sismica del terreno (A, B, C, D, E, S1, S2) secondo quanto indicato dalla Nuova Normativa Sismica (Ordinanza P.C.M. 2003 e s.m.i.) e dagli Eurocodici 7 e 8.

Per l'elaborazione MASW si è tenuta in considerazione la traccia sismica rilevata a seguito dell'energizzazione effettuata a ml. 2,00 dal geofono nr. 24 in posizione di estrema destra rispetto alla base sismica.

L'elaborazione ha riguardato l'intero campionamento della registrazione avente durata 2048 mS e una frequenza di campionamento di 500 microS. Le misure del moto in superficie sono state elaborate tramite una doppia trasformata del campo d'onda (trasformate Slant-Stack e di Fourier), con la quale viene rappresentato il segnale nel dominio ω -p (frequenza angolare - slowness), in modo da identificare la curva di dispersione sperimentale delle onde di Rayleigh. Successivamente si procede con la determinazione del profilo di velocità delle onde di taglio V_s attraverso un processo di inversione delle stesse curve di dispersione.

Il metodo consiste nell'assumere un profilo di velocità iniziale di primo tentativo e attraverso un opportuno software si calcola la velocità di fase apparente delle onde di Rayleigh corrispondente al profilo stratigrafico di velocità ipotizzato (curva di dispersione teorica). Dal confronto tra la curva di dispersione *sperimentale* e la curva di dispersione *teorica* vengono modificati gli spessori e le velocità del modello per minimizzare la distanza tra le due curve.

Il processo di identificazione si conclude quando si raggiunge la sovrapposizione ottimale fra le due curve, quella *sperimentale* e quella *teorica*.

Figura 25: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "L"

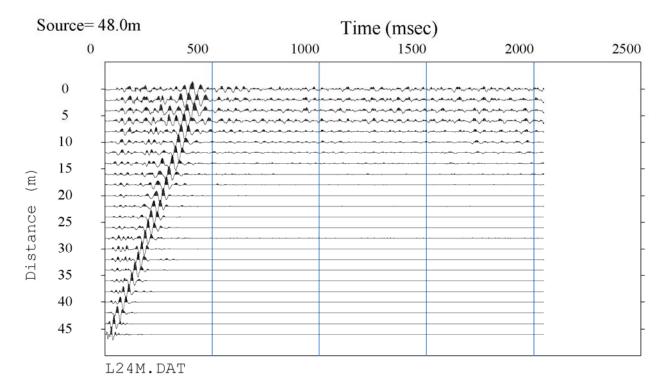


Figura 26: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "L"

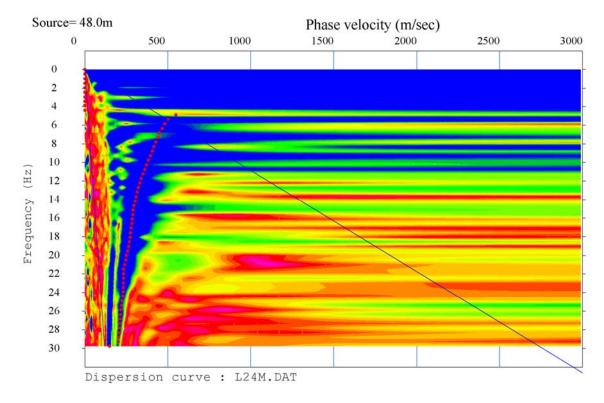


Figura 27: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "L"

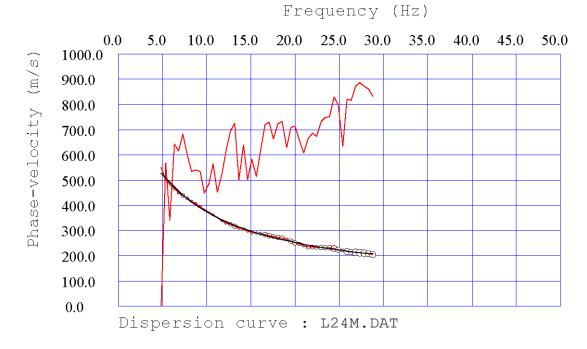
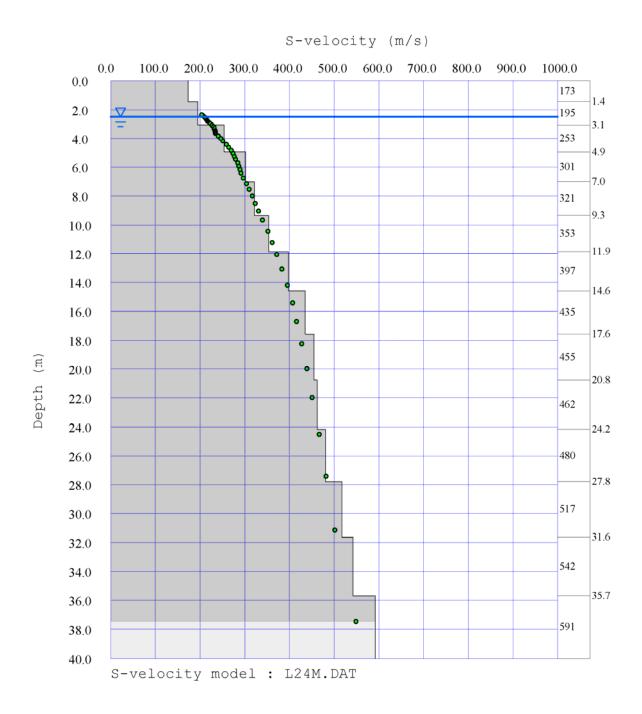



Figura 28: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI INVERSIONE - BASE "L"

10 ELABORAZIONE DATI RILEVATI - BASE "L"

ONDE Vp

L'analisi dei risultati ottenuti dall'indagine di sismica a rifrazione superficiale, ha portato alla classificazione sismostratigrafica dei terreni sottoposti a test investigativo di tipo geometrico e meccanico (profondità dei sismostrati e velocità sismiche longitudinali medie di riferimento).

Le osservazioni ricavate dall'interpretazione dei dati permettono di ricostruire un'immagine sismica del sottosuolo investigato costituita da tre sismostrati con V_{p(media)} rispettivamente pari a 349 m/sec, 1419 m/sec e 2407 m/sec.

Per quanto riguarda la profondità degli orizzonti sismo-stratigrafici si rimanda alla sezione riportata in fig. 22.

ONDE Vs

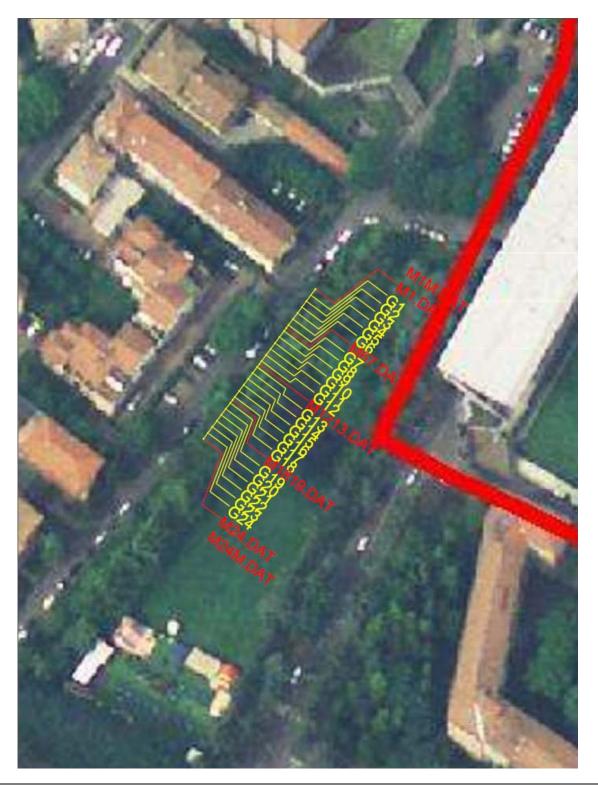
L'analisi dei risultati ottenuti dall'indagine MASW ha portato alla determinazione degli strati e delle velocità delle onde sismiche trasversali (V_s) fino a una profondità effettiva pari a circa 37,50 ml. dal piano campagna.

Dall'analisi delle elaborazioni si evidenzia la presenza dei seguenti livelli:

Vel	Velocità onde Vp e Vs ottenute dall'elaborazione MASW					
Strato	Quota da p.c.	Spessore dello strato	V _s	V _P	Peso di volume	
	[m]	[m]	[m/s]	[m/s]	[kN/m ³]	
h1	-1.43	1.43	173	346	13.558	
h2	-3.08	1.65	195	390	13.723	
h3	-4.95	1.87	254	1572	17.757	
h4	-7.03	2.08	301	1625	17.921	
h5	-9.34	2.31	321	1646	17.988	
h6	-11.87	2.53	354	1682	18.098	
h7	-14.62	2.75	398	1732	18.248	
h8	-17.58	2.96	436	1773	18.375	
h9	-20.77	3.19	455	1795	18.440	
h10	-24.18	3.41	463	1803	18.464	
h11	-27.80	3.62	481	1823	18.524	
h12	-31.65	3.85	517	1864	18.645	
h13	-35.71	4.06	542	1892	18.727	
h14	-48.57	12.86	592	1947	18.888	

Al termine della elaborazione si è rilevato riscontrato una convergenza dei valori pari a 1.147388%, come riportato nella tabella sottostante:

Iteration=0 RMS=6.476299 m/s (1.539618%)	Iteration=1 RMS=6.115363 m/s (1.435905%)
Iteration=2 RMS=5.844492 m/s (1.356360%)	Iteration=3 RMS=5.637267 m/s (1.298593%)
Iteration=4 RMS=5.474984 m/s (1.254566%)	Iteration=5 RMS=5.342232 m/s (1.221546%)
Iteration=6 RMS=5.232660 m/s (1.199574%)	Iteration=7 RMS=5.139169 m/s (1.180805%)
Iteration=8 RMS=5.056186 m/s (1.163229%)	Iteration=9 RMS=4.982235 m/s (1.147388%)



Ai sensi del DM 14.01.2008 (GU del 04.02.2008, n. 29 – S.O. n. 30), punto 3.2.2. "Categoria di suolo e condizioni topografiche", il valore della velocità media delle onde sismiche di taglio nei primi 30 metri $(V_{s,30})$ può essere considerato come segue:

	Calcolo V _S	, ₃₀ ottenuto d	dall'elaboraz	ione MASW	
Strato	Quota da p.c.	h _i	V _{s,i}	h _i / V _{s,i}	$\Sigma h_i / V_{s,i}$
	[m]	[m]	[m/s]	[s]	[s]
h1	-1,43	1,43000	173	0,00826	
h2	-3,08	1,65000	195	0,00845	
h3	-4,95	1,87000	254	0,00736	
h4	-7,03	2,08000	301	0,00690	
h5	-9,34	2,31000	321	0,00720	
h6	-11,87	2,53000	354	0,00716	
h7	-14,62	2,75000	398	0,00691	
h8	-17,58	2,96000	436	0,00680	
h9	-20,77	3,19000	455	0,00701	
h10	-24,18	3,41000	463	0,00737	
h11	-27,80	3,62000	481	0,00753	
h12	-30,00	2,20000	517	0,00425	•
h13	-30,00	0,00000	0	0,00000	•
h14	-30,00	0,00000	0	0,00000	0,08521
	_		V _{s,30}	352	[m/s]

11 BASE SISMICA "M"

SCALA 1:1.000

Figura 29: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "M"

Figura 30: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI – BASE "M"

File	e Reference
1	M1.DAT
2	M67.DAT
3	M1213.DAT
4	M1819.DAT
5	M24.DAT
MASW	M24M.DAT

	SHOOT P	OINTS COC	PRDINATE	
SP	Elev [m]	X-loc [m]	Y-Loc [m]	Depth [m]
1	0,00	-2,00	0,00	0,00
2	0,00	13,00	0,00	0,00
3	0,00	23,00	0,00	0,00
4	0,00	35,00	0,00	0,00
5	0,00	48,00	0,00	0,00

	FIRST BREAKS ARRIVAL							
Geo	Z [m]	X-loc [m]	Y-Loc [m]	SP 1 [mS]	SP 2 [mS]	SP 3 [mS]	SP 4 [mS]	SP 5 [mS]
1	0,00	0,00	0,00	6,92	37,44	44,94	50,64	57,33
2	0,00	2,00	0,00	16,24	35,96	43,88	49,32	56,79
3	0,00	4,00	0,00	26,16	34,00	42,82	47,92	56,52
4	0,00	6,00	0,00	31,41	29,24	41,76	47,00	55,80
5	0,00	8,00	0,00	35,96	23,22	40,70	45,76	54,72
6	0,00	10,00	0,00	38,48	15,30	38,88	44,46	53,72
7	0,00	12,00	0,00	39,87	4,23	37,53	43,68	52,48
8	0,00	14,00	0,00	41,13	3,78	34,74	42,88	51,44
9	0,00	16,00	0,00	42,48	14,49	28,08	41,88	50,67
10	0,00	18,00	0,00	43,56	22,68	19,62	40,68	49,14
11	0,00	20,00	0,00	44,73	30,87	10,17	39,33	47,79
12	0,00	22,00	0,00	45,54	35,01	3,48	38,07	45,81
13	0,00	24,00	0,00	46,44	37,53	3,48	35,01	44,73
14	0,00	26,00	0,00	47,68	39,33	12,69	31,95	43,36
15	0,00	28,00	0,00	48,60	41,13	22,95	27,09	42,20
16	0,00	30,00	0,00	49,59	42,21	31,14	20,16	41,20
17	0,00	32,00	0,00	50,60	43,46	34,74	13,25	39,87
18	0,00	34,00	0,00	51,35	44,78	37,08	2,80	38,88
19	0,00	36,00	0,00	52,10	45,99	39,00	2,68	37,56
20	0,00	38,00	0,00	52,84	46,67	40,57	13,13	36,08
21	0,00	40,00	0,00	53,59	47,61	41,67	20,88	32,88
22	0,00	42,00	0,00	54,34	48,36	42,69	27,75	26,96
23	0,00	44,00	0,00	55,08	49,32	43,74	31,28	18,28
24	0,00	46,00	0,00	55,83	50,20	44,46	33,68	8,10

LAYERS DEPTH						
Geo	X-loc [m]	Layer 2 [m]	Layer 3 [m]	Layer 4 [m]	Layer 5 [m]	
1	0,00	3,30	8,39	0,00	0,00	
2	2,00	3,19	8,81	0,00	0,00	
3	4,00	3,33	8,62	0,00	0,00	
4	6,00	3,55	8,17	0,00	0,00	
5	8,00	3,66	7,67	0,00	0,00	
6	10,00	3,73	7,22	0,00	0,00	
7	12,00	3,78	6,85	0,00	0,00	
8	14,00	3,86	6,72	0,00	0,00	
9	16,00	3,87	6,99	0,00	0,00	
10	18,00	3,85	7,38	0,00	0,00	
11	20,00	3,77	7,78	0,00	0,00	
12	22,00	3,69	8,13	0,00	0,00	
13	24,00	3,57	8,73	0,00	0,00	
14	26,00	3,57	8,96	0,00	0,00	
15	28,00	3,61	9,10	0,00	0,00	
16	30,00	3,64	9,05	0,00	0,00	
17	32,00	3,66	8,77	0,00	0,00	
18	34,00	3,70	8,31	0,00	0,00	
19	36,00	3,74	7,94	0,00	0,00	
20	38,00	3,62	8,43	0,00	0,00	
21	40,00	3,39	9,24	0,00	0,00	
22	42,00	3,18	10,10	0,00	0,00	
23	44,00	3,04	10,83	0,00	0,00	
24	46,00	2,98	11,40	0,00	0,00	

LAYERS	VELOCITY
Layer	Velocity [m/s]
1	245,00
2	1514,00
3	1752,00
4	
5	

Figura 31: ANDAMENTO DELLE DROMOCRONE - BASE "M"

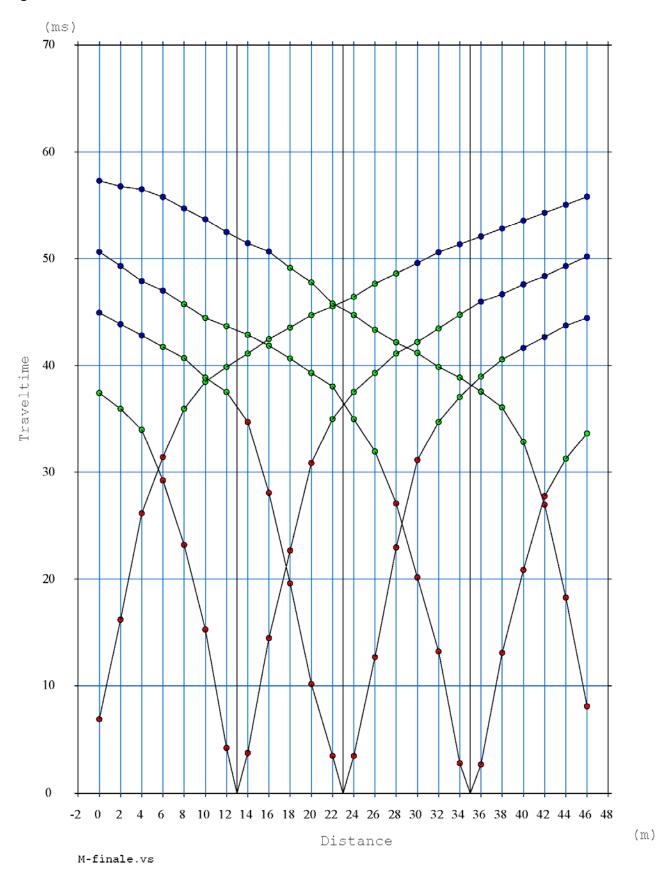


Figura 32: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "M"

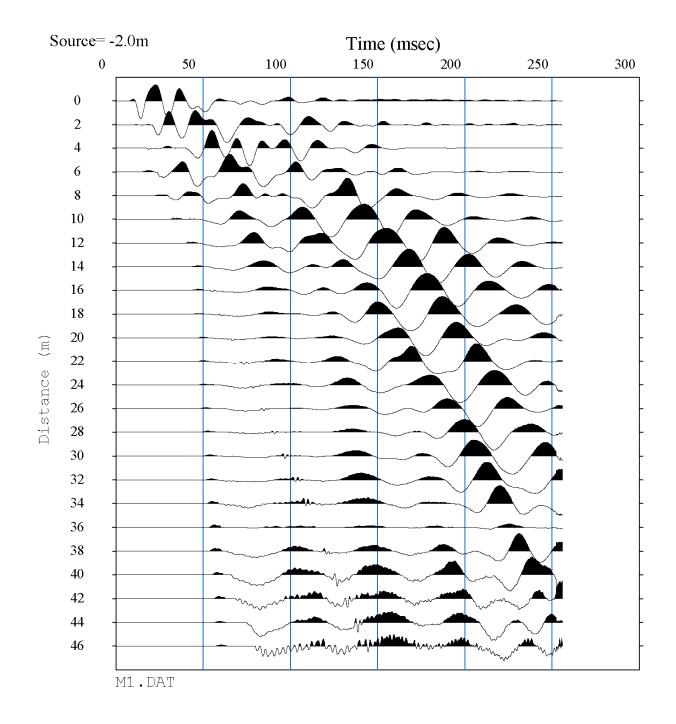


Figura 33: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR. 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "M"

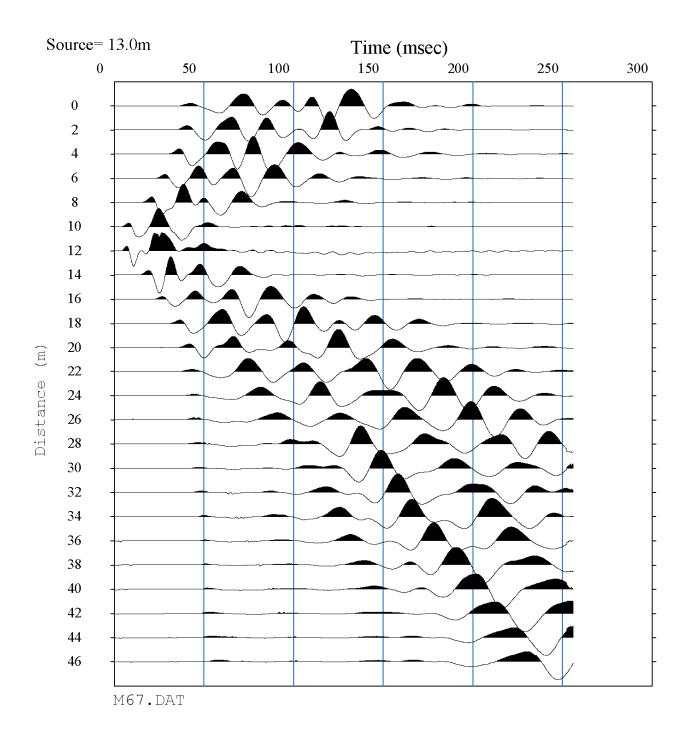


Figura 34: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR. 13 IN POSIZIONE CENTRALE - BASE "M"

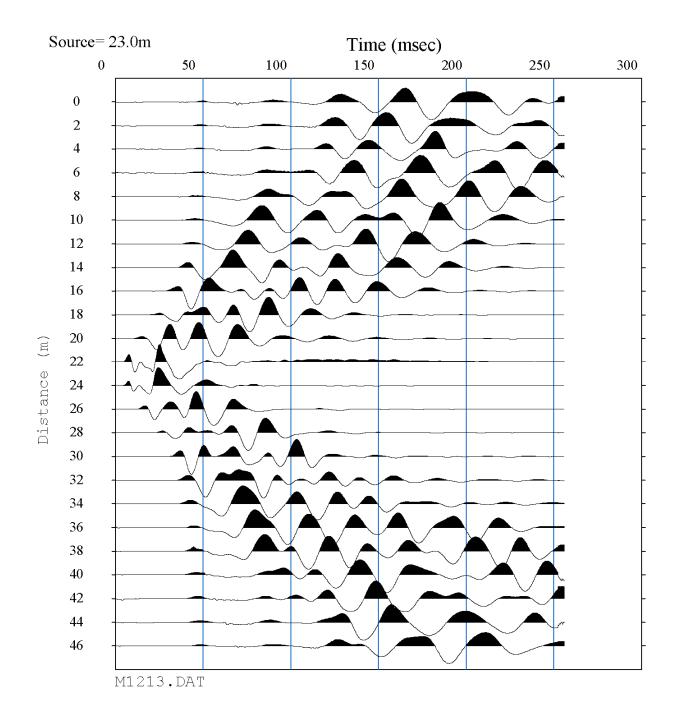


Figura 35: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "M"

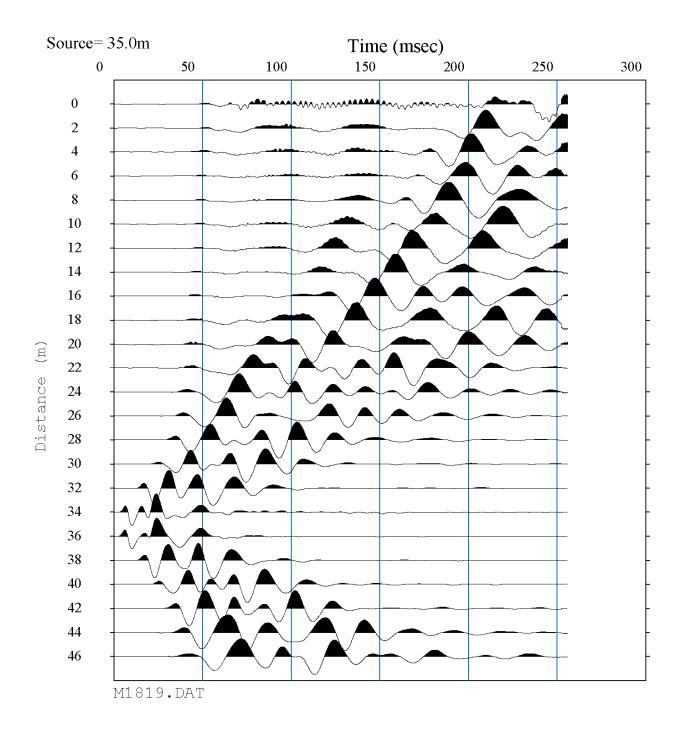


Figura 36: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "M"

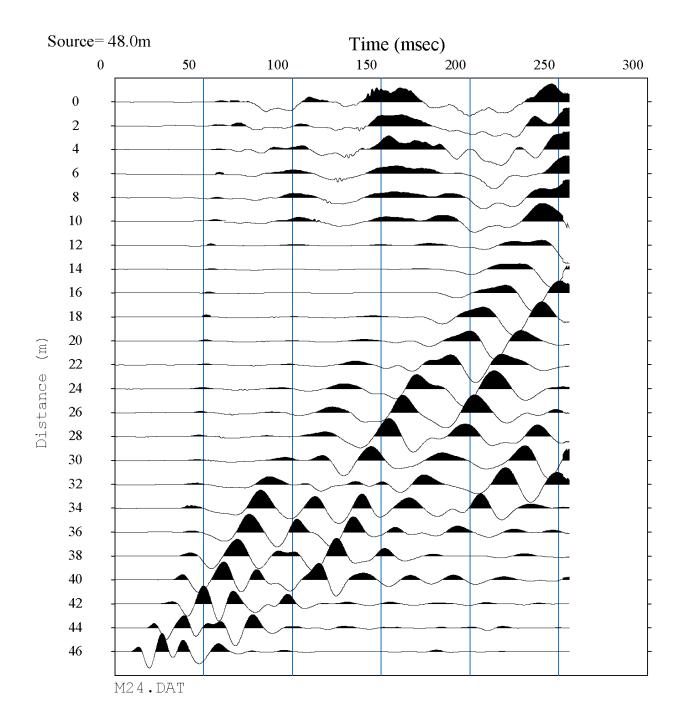
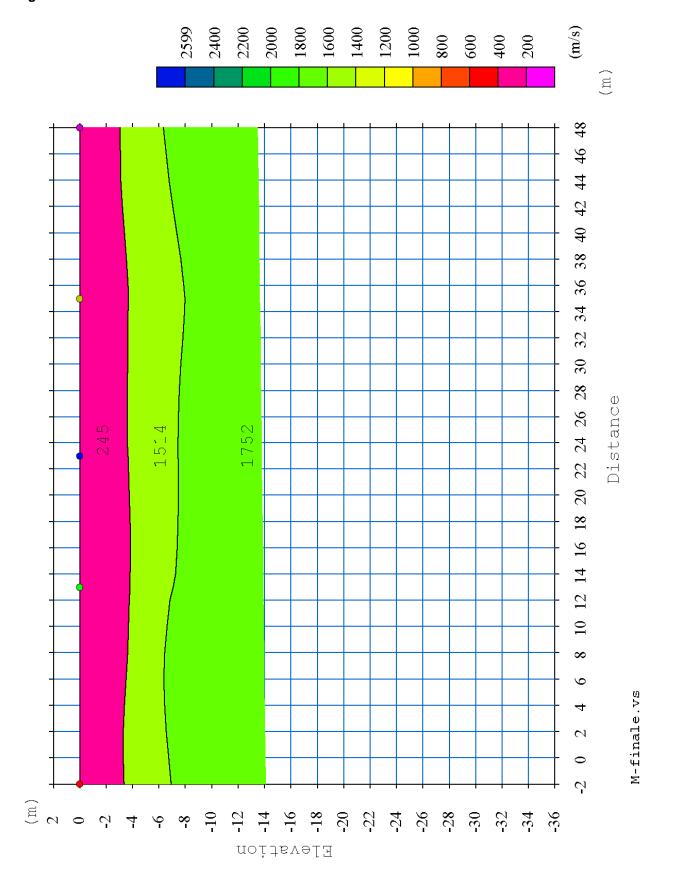



Figura 37: SEZIONE INTERPRETATIVA – BASE "M"

12 VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "M"

La determinazione della velocità delle onde sismiche di taglio (V_s) è stata effettuata mediante elaborazione con il metodo MASW, allo scopo di determinare la categoria sismica del terreno (A, B, C, D, E, S1, S2) secondo quanto indicato dalla Nuova Normativa Sismica (Ordinanza P.C.M. 2003 e s.m.i.) e dagli Eurocodici 7 e 8.

Per l'elaborazione MASW si è tenuta in considerazione la traccia sismica rilevata a seguito dell'energizzazione effettuata a ml. 2,00 dal geofono nr. 24 in posizione di estrema destra rispetto alla base sismica.

L'elaborazione ha riguardato l'intero campionamento della registrazione avente durata 2048 mS e una frequenza di campionamento di 500 microS. Le misure del moto in superficie sono state elaborate tramite una doppia trasformata del campo d'onda (trasformate Slant-Stack e di Fourier), con la quale viene rappresentato il segnale nel dominio ω-p (frequenza angolare - slowness), in modo da identificare la curva di dispersione sperimentale delle onde di Rayleigh. Successivamente si procede con la determinazione del profilo di velocità delle onde di taglio V_s attraverso un processo di inversione delle stesse curve di dispersione.

Il metodo consiste nell'assumere un profilo di velocità iniziale di primo tentativo e attraverso un opportuno software si calcola la velocità di fase apparente delle onde di Rayleigh corrispondente al profilo stratigrafico di velocità ipotizzato (curva di dispersione teorica). Dal confronto tra la curva di dispersione *sperimentale* e la curva di dispersione *teorica* vengono modificati gli spessori e le velocità del modello per minimizzare la distanza tra le due curve.

Il processo di identificazione si conclude quando si raggiunge la sovrapposizione ottimale fra le due curve, quella *sperimentale* e quella *teorica*.

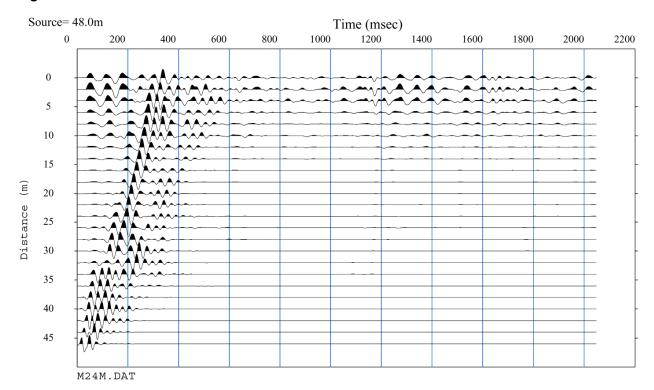


Figura 38: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "M"

Figura 39: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "M"

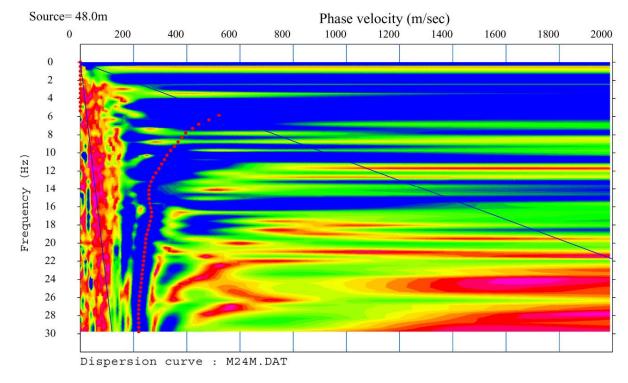


Figura 40: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "M"

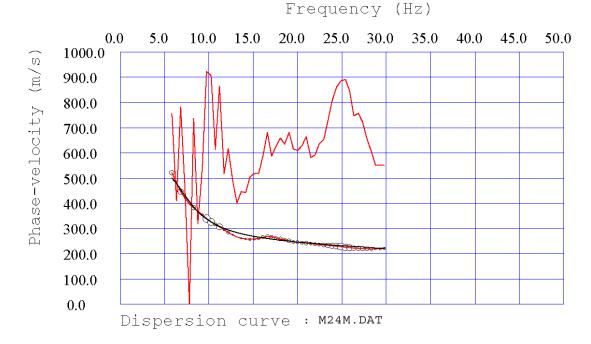
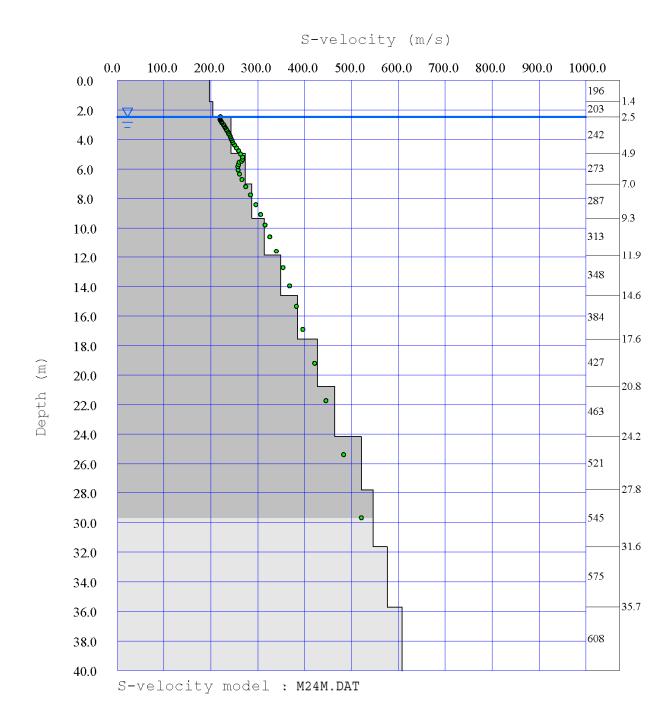



Figura 41: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI INVERSIONE - BASE "M"

13 ELABORAZIONE DATI RILEVATI - BASE "M"

ONDE Vp

L'analisi dei risultati ottenuti dall'indagine di sismica a rifrazione superficiale, ha portato alla classificazione sismostratigrafica dei terreni sottoposti a test investigativo di tipo geometrico e meccanico (profondità dei sismostrati e velocità sismiche longitudinali medie di riferimento).

Le osservazioni ricavate dall'interpretazione dei dati permettono di ricostruire un'immagine sismica del sottosuolo investigato costituita da tre sismostrati con $V_{p(media)}$ rispettivamente pari a 245 m/sec, 1514 m/sec e 1752 m/sec.

Per quanto riguarda la profondità degli orizzonti sismo-stratigrafici si rimanda alla sezione riportata in fig. 37.

ONDE Vs

L'analisi dei risultati ottenuti dall'indagine MASW ha portato alla determinazione degli strati e delle velocità delle onde sismiche trasversali (V_s) fino a una profondità effettiva pari a circa 29,50 ml. dal piano campagna.

Dall'analisi delle elaborazioni si evidenzia la presenza dei seguenti livelli:

Vel	Velocità onde Vp e Vs ottenute dall'elaborazione MASW					
Strato	Quota da	Spessore	Vs	V _P	Peso di	
	p.c.	dello strato			volume	
	[m]	[m]	[m/s]	[m/s]	[kN/m³]	
h1	-1,43	1,43	197	476	14,040	
h2	-2,50	1,07	203	479	14,050	
h3	-4,95	2,45	243	1580	17,782	
h4	-7,03	2,08	273	1605	17,860	
h5	-9,34	2,31	287	1638	17,962	
h6	-11,87	2,53	313	1683	18,099	
h7	-14,62	2,75	349	1723	18,223	
h8	-17,58	2,96	385	1757	18,325	
h9	-20,77	3,19	427	1796	18,443	
h10	-24,18	3,41	464	1824	18,527	
h11	-27,80	3,62	521	1869	18,659	
h12	-31,65	3,85	546	1869	18,659	
h13	-35,71	4,06	576	1869	18,659	
h14	-48,57	12,86	608	1869	18,659	

Al termine della elaborazione si è rilevato riscontrato una convergenza dei valori pari a 2.320709%, come riportato nella tabella sottostante:

Iteration=0 RMS=35.933383 m/s (12.533093%)	Iteration=1 RMS=29.230323 m/s (10.063563%)
Iteration=2 RMS=23.905603 m/s (8.091804%)	Iteration=3 RMS=19.683890 m/s (6.516425%)
Iteration=4 RMS=16.371008 m/s (5.253947%)	Iteration=5 RMS=13.793221 m/s (4.294273%)
Iteration=6 RMS=11.813431 m/s (3.587134%)	Iteration=7 RMS=10.312678 m/s (3.035903%)
Iteration=8 RMS=9.196039 m/s (2.613223%)	Iteration=9 RMS=8.372043 m/s (2.320709%)

Ai sensi del DM 14.01.2008 (GU del 04.02.2008, n. 29 – S.O. n. 30), punto 3.2.2. "Categoria di suolo e condizioni topografiche", il valore della velocità media delle onde sismiche di taglio nei primi 30 metri $(V_{s,30})$ può essere considerato come segue:

	Calcolo V _S	, ₃₀ ottenuto (dall'elaboraz	ione MASW	
Strato	Quota da p.c.	h _i	V _{s,i}	h _i / V _{s,i}	Σ h _i / V _{s,i}
	[m]	[m]	[m/s]	[s]	[s]
h1	-1,43	1,43000	197	0,00727	
h2	-2,50	1,07000	203	0,00526	
h3	-4,95	2,45000	243	0,01009	
h4	-7,03	2,08000	273	0,00761	
h5	-9,34	2,31000	287	0,00805	
h6	-11,87	2,53000	313	0,00808	
h7	-14,62	2,75000	349	0,00788	
h8	-17,58	2,96000	385	0,00769	
h9	-20,77	3,19000	427	0,00747	
h10	-24,18	3,41000	464	0,00736	
h11	-27,80	3,62000	521	0,00695	
h12	-30,00	2,20000	546	0,00403	•
h13	-30,00	0,00000	0	0,00000	•
h14	-30,00	0,00000	0	0,00000	0,08773
			V _{s,30}	342	[m/s]

A Vs. disposizione per ogni chiarimento e/o informazione si porgono distinti saluti.

Vignola, 16/01/2009

Geo-Xpert Italia snc (Dott. Geol. Giorgio Masotti)

Sede Legale: Via di Mezzo, 90 – 41058 VIGNOLA (MO) – ITALY

Telefono +39 059 761644 - Telefax +39 059 779111

Web www.geo-xpert.com ---- Email info@geo-xpert.com

PARTITA I.V.A.: 02740680364 - COD. FISCALE: 02740680364 - C.C.I.A.A. 326926

COMMITTENTE

Dott. Geol. CASTAGNETTI STEFANO

Via Argini sud, 24 43030 BASILICANOVA (PARMA)

TIPOLOGIA DELL'INTERVENTO

DETERMINAZIONE DELLE Vs30 AI FINI DELLA VALUTAZIONE DELLA RISPOSTA SISMICA LOCALE DELLA MICROZONAZIONE SISMICA DI CUI ALLA D.A.L. 112/2007

OGGETTO DELL'ELABORATO

RELAZIONE DI INDAGINE GEOFISICA DI TIPO SISMICO A RIFRAZIONE

COMPARTO PRATOFONTANA

LOCALIZZAZIONE
ITALIA
REGIONE: EMILIA ROMAGNA
PROVINCIA: REGGIO EMILIA

CODIFICA GENERALE ELABORATO								
CODICE INTERNO	LOTTO	SETTORE DI	TIPO DOCUMENTO	N. ELABORATO				
		ATTIVITA'						
2480	N	G	RFI	1				
2400	IN IN	J	IVEE	•				

VERSIONE	DATA	OGGETTO CONTRACTOR OF THE PROPERTY OF THE PROP
0	16/01/2009	1° EMISSIONE

DATI PROGETTISTA

Dott. Geol. Giorgio Masotti Via di Mezzo, 90 41058 Vignola (MO) – Italy

INDICE

1	PREMESSA3
2	INQUADRAMENTO GEOGRAFICO
3	NORMATIVA D.M. 14/01/2008 6
4	INDAGINI GEOFISICHE DI TIPO SISMICO A RIFRAZIONE8
5	BASE SISMICA "N"9
6	VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "N"
7	ELABORAZIONE DATI RILEVATI - BASE "N"
	INDICE DEGLI ALLEGATI
Fig	URA 1: ESTRATTO DI CARTA TOPOGRAFICA R.E.R. 200-NE DENOMINATA "REGGIO EMILIA NORD" E
_	N. 201-NO DENOMINATA "CORREGGIO" - SCALA 1:25.000
_	URA 2: ESTRATTO DI IMMAGINE SATELLITARE CON INDICAZIONE DEL LIMITE DI COMPARTO 5
	URA 3: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "N"
	URA 4: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI - BASE "N"
	URA 5: ANDAMENTO DELLE DROMOCRONE - BASE "N"
FIG	AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "N"
Fic	URA 7: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR.
1 10	7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "N"
Fig	URA 8: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR.
	13 IN POSIZIONE CENTRALE - BASE "N"
Fig	URA 9: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR.
	19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "N"
Fig	URA 10: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00
	ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "N" 17
FIG	URA 11: SEZIONE INTERPRETATIVA – BASE "N"
Fig	URA 12: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "N"
	URA 13: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "N"
	URA 14: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "N" 20
FIG	URA 15: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI
	INVERSIONE - BASE "N"

1 PREMESSA

Come richiesto dal tecnico incaricato per gli studi geologici-geotecnici, il sottoscritto:

Dott. Giorgio Masotti, Geologo libero professionista, regolarmente iscritto all'Ordine dei Geologi della Regione
 Emilia Romagna con il numero 588, in qualità di consulente tecnico della ditta Geo-Xpert Italia – Servizi –
 Tecnologie e Ambiente snc, con sede in Vignola (MO) – Via di Mezzo, 90,

ha provveduto alla stesura della presente relazione, finalizzata alla elaborazione delle indagini geofisiche effettuate con il metodo sismico a rifrazione ai fini della determinazione della caratterizzazione sismica del terreno di fondazione ai sensi del testo unitario "Norme Tecniche per le Costruzioni" (D.M. 14.01.2008).

L'area interessata dall'indagine geologico-geotecnica si trova in comune di Reggio Emilia, Comparto PRATOFONTANA.

Allo scopo di determinare le caratteristiche litologiche e stratigrafiche dei terreni presenti, è stata condotta un'indagine diretta in sito di tipo sismico a rifrazione costituita da nr. 1 base sismica eseguita in data 12/01/2009, con determinazione sperimentale mediante inversione (Metodo MASW) del valore di V_{s,30}.

2 INQUADRAMENTO GEOGRAFICO

La zona oggetto d'intervento si colloca nell'ambito del territorio comunale di REGGIO EMILIA, e risulta compresa all'interno della documentazione cartografica sotto riportata:

Cartografia Regionale:

- CARTA TOPOGRAFICA n. 200-NE denominata "REGGIO EMILIA NORD" e n. 201-NO denominata "CORREGGIO" – Scala 1:25.000
- SEZIONE R.E.R. n. 200080 "REGGIO EMILIA" e n. 201050 "MASSENZATICO" scala 1:10.000

Figura 1: ESTRATTO DI CARTA TOPOGRAFICA R.E.R. 200-NE denominata "REGGIO EMILIA NORD" e n. 201-NO denominata "CORREGGIO" - SCALA 1:25.000

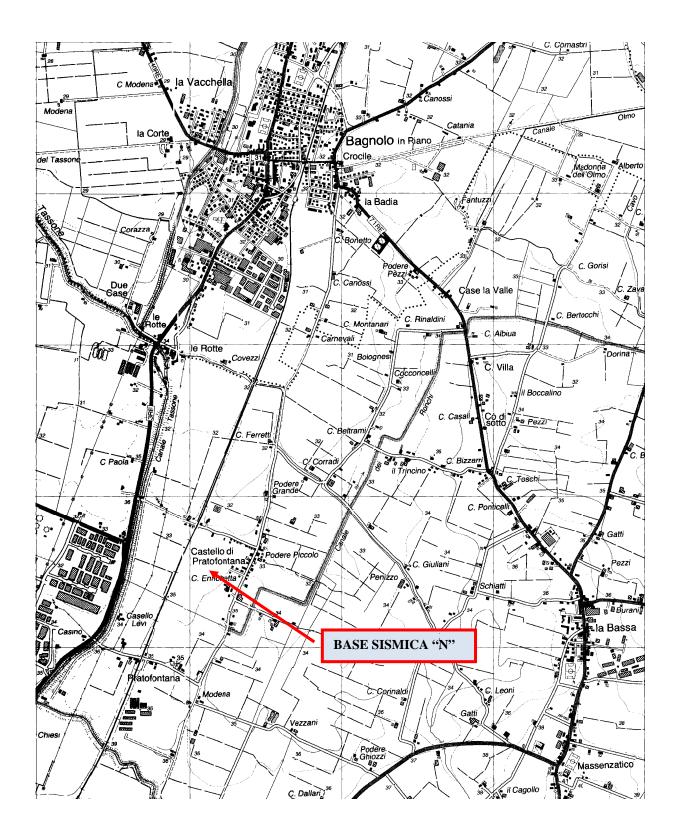


Figura 2: ESTRATTO DI IMMAGINE SATELLITARE CON INDICAZIONE DEL LIMITE DI COMPARTO

3 NORMATIVA D.M. 14/01/2008

Le "Norme tecniche per le costruzioni" definiscono che, ai fini della valutazione della azione sismica di progetto (punto 3.2.2. "Categoria di suolo e condizioni topografiche"), deve essere valutata l'influenza delle condizioni litologiche, morfologiche e topografiche locali sulle caratteristiche del moto del suolo in superficie, mediante studi specifici di risposta sismica locale.

In mancanza di tali studi si può utilizzare una classificazione che riguardi i terreni compresi tra il piano di imposta delle fondazioni degli edifici ed il sub-strato rigido di riferimento con velocità delle onde di taglio $V_s > 800$ m/s (bedrock) o comunque un sub-strato commisurato alla estensione ed importanza dell'opera.

La classificazione si effettua in base ai valori della velocità equivalente V_{s,30} di propagazione delle onde di taglio entro i primi 30 metri di profondità.

Nei casi in cui tale determinazione della velocità non sia disponibile, la classificazione può essere eseguita in base ai valori del numero equivalente di colpi della prova penetrometrica dinamica (Standard Penetration Test) $N_{SPT,30}$ nei terreni prevalentemente a grana grossa e della resistenza non drenata equivalente $c_{u,30}$ nei terreni prevalentemente a grana fina.

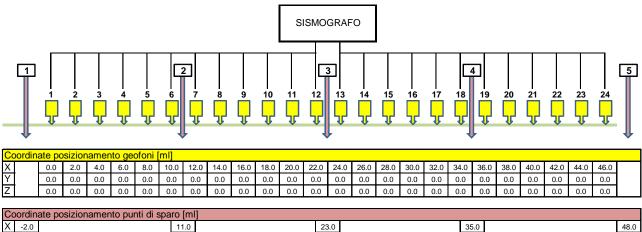
La velocità equivalente delle onde di taglio $V_{\text{s},30}$ è definita dall'espressione	
la resistenza penetrometrica dinamica equivalente N _{SPT,30} è definita dall'esp	pressione
la resistenza non drenata equivalente c _{u,30} è definita dall'espressione	

dove h_i , $V_{s,i}$, $N_{SPT,i}$ e $c_{u,i}$ sono rispettivamente lo spessore, la velocità delle onde di taglio V_s , il numero di colpi N_{SPT} e la resistenza non drenata c_u nell'i-esimo strato compreso nei primi 30 metri di profondità.

Le categorie di sottosuolo di riferimento sono:

ori a 800 m/s,
on a 555 m, 5,
no pari a 3 m.
ana fina molto
delle proprietà
ero NSPT,30 >
nte consistenti,
tà meccaniche
PT,30 <50 nei
scarsamente
delle proprietà
15 nei terreni a
ul substrato di
n t

La normativa prevede due categorie aggiuntive di sottosuolo per le quali è necessario predisporre specifiche analisi per la definizione delle azioni sismiche, particolarmente nei casi in cui la presenza di terreni suscettibili di liquefazione e/o di argille d'elevata sensibilità possa comportare fenomeni di collasso del terreno:


Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di Vs,30 < 100 m/s (ovvero 10 < cu,30 < 20 kPa), che
	includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono
	almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili a liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo
	non classificabile nei tipi precedenti.

4 INDAGINI GEOFISICHE DI TIPO SISMICO A RIFRAZIONE

Al fine di determinare le caratteristiche geotecniche dei terreni del comparto urbanistico di studio sono state eseguite in data 12/01/2009 nr. 1 base sismica a rifrazione con sistema di acquisizione 24 canali con energizzazione del terreno mediante una mazza battente da Kg. 9 su una piastra di battuta in alluminio.

Per la disposizione dei trasduttori velocimetrici (geofoni) sul sito oggetto di indagine, è stato definito un allineamento mantenendo una equidistanza ripetitiva lungo tutta la tratta della base sismica, come evidenziato nello schema sottostante.

(Coordinate posizionamento punti di sparo [mi]							
)	-2.0	11.0	23.0	35.0	48.0			
1	0.0	0.0	0.0	0.0	0.0			
Z	0.0	0.0	0.0	0.0	0.0			

Caratteristiche geometriche dello stendimento sismico

Lunghezza linea sismica	46,0m	Spazio intergeofonico	2,0m
Numero di punti di energizzazione	5	Numero di trasduttori velocimetri	24

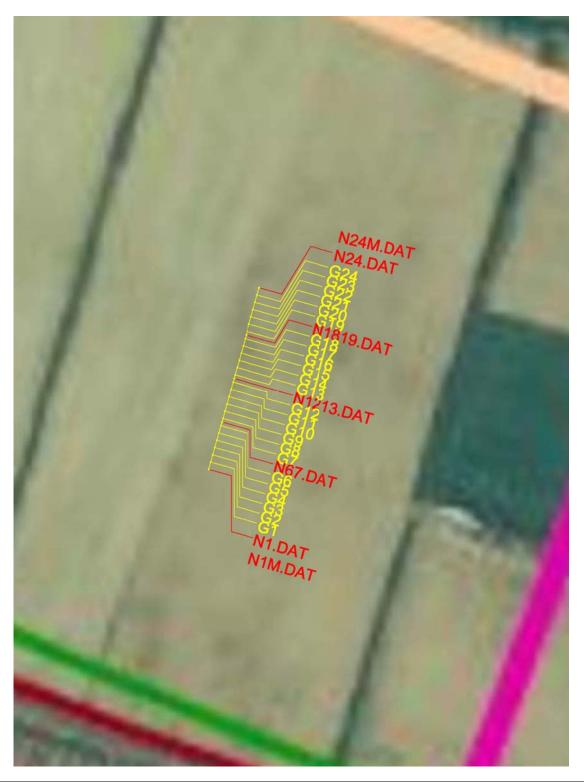
Strumentazione e impostazioni di registrazione

Modello strumento di acquisizione	PASI 16S24
Risoluzione di campionamento	16 bit
Frequenza di campionamento	125 μs
Geofoni verticali con frequenza di pari a 4,5 Hz	24
Tempo di acquisizione	256 ms

Per quanto riguarda l'inizio della registrazione è stato utilizzato un geofono "starter" posizionato in aderenza alla piastra di battuta e collegato allo strumento in modo da garantire uno scarto di errore sul "Tempo Zero" non superiore a 1 msec. Per la base sismica sono stati effettuati nr. 5 punti di energizzazione lungo lo stendimento sismico:

1a energizzazione posta a ml. 2.00 verso l'esterno rispetto al geofono nr. 1 (estremo sinistro)

2a energizzazione posta tra i geofoni nr. 6 e nr. 7 (intermedio sinistro)


3a energizzazione posta tra i geofoni nr. 12 e nr. 13 (centrale)

4a energizzazione posta tra i geofoni nr. 18 e nr. 19 (intermedio destro)

5a energizzazione posta a ml. 2.00 verso l'esterno rispetto al geofono nr. 24 (estremo destro)

5 BASE SISMICA "N"

SCALA 1:1.000

Figura 3: DOCUMENTAZIONE FOTOGRAFICA LINEA SISMICA EFFETTUATA – BASE "N"

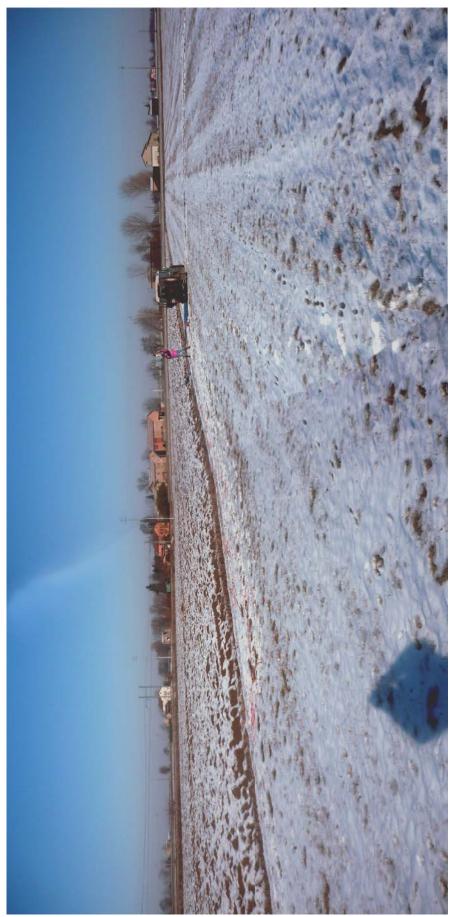
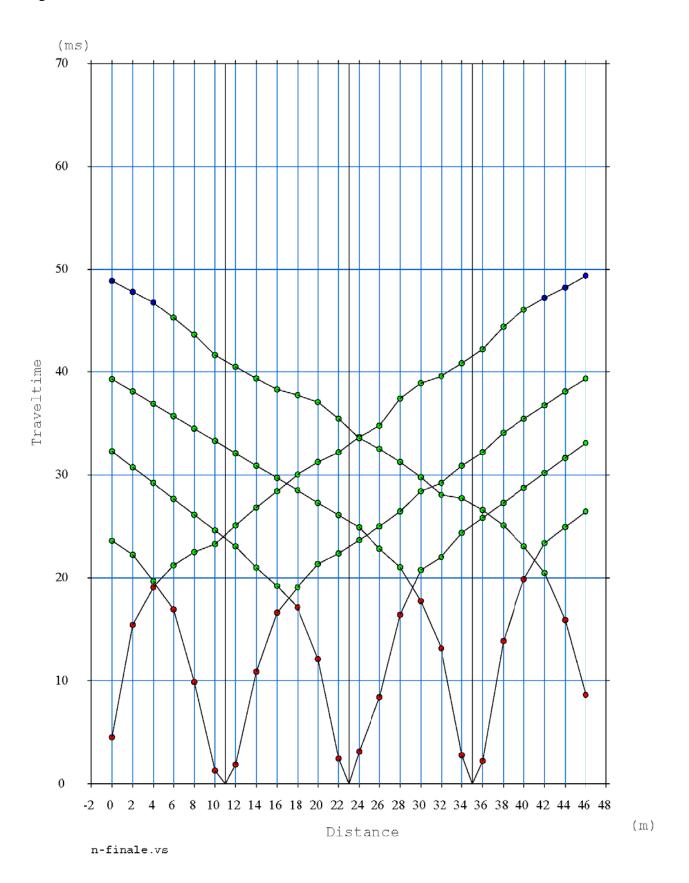


Figura 4: TABELLE DI ELABORAZIONE DEI DATI REGISTRATI - BASE "N"

File Reference				
1 N1.DAT				
2	N67.DAT			
3	N1213.DAT			
4	N1819.DAT			
5	N24.DAT			
MASW	N1M.DAT			


SHOOT POINTS COORDINATE							
SP	Elev [m]	X-loc [m]	Y-Loc [m]	Depth [m]			
1	0,00	-2,00	0,00	0,00			
2	0,00	11,00	0,00	0,00			
3	0,00	23,00	0,00	0,00			
4	0,00	35,00	0,00	0,00			
5	0,00	48,00	0,00	0,00			

FIRST BREAKS ARRIVAL								
Geo	Z [m]	X-loc [m]	Y-Loc [m]	SP 1 [mS]	SP 2 [mS]	SP 3 [mS]	SP 4 [mS]	SP 5 [mS]
1	0,00	0,00	0,00	4,52	23,64	32,31	39,31	48,87
2	0,00	2,00	0,00	15,44	22,28	30,77	38,11	47,83
3	0,00	4,00	0,00	19,08	19,68	29,23	36,91	46,78
4	0,00	6,00	0,00	21,24	16,92	27,69	35,71	45,28
5	0,00	8,00	0,00	22,52	9,88	26,16	34,51	43,62
6	0,00	10,00	0,00	23,32	1,32	24,62	33,32	41,63
7	0,00	12,00	0,00	25,12	1,88	23,08	32,12	40,50
8	0,00	14,00	0,00	26,84	10,88	21,00	30,92	39,36
9	0,00	16,00	0,00	28,44	16,60	19,20	29,72	38,32
10	0,00	18,00	0,00	30,04	19,08	17,13	28,52	37,76
11	0,00	20,00	0,00	31,28	21,36	12,13	27,32	37,08
12	0,00	22,00	0,00	32,20	22,40	2,48	26,12	35,48
13	0,00	24,00	0,00	33,68	23,68	3,16	24,92	33,56
14	0,00	26,00	0,00	34,80	25,00	8,40	22,84	32,52
15	0,00	28,00	0,00	37,44	26,48	16,40	21,04	31,28
16	0,00	30,00	0,00	38,92	28,44	20,80	17,72	29,80
17	0,00	32,00	0,00	39,60	29,24	22,04	13,16	28,08
18	0,00	34,00	0,00	40,84	30,92	24,39	2,80	27,76
19	0,00	36,00	0,00	42,20	32,20	25,85	2,24	26,60
20	0,00	38,00	0,00	44,41	34,12	27,30	13,84	25,12
21	0,00	40,00	0,00	46,08	35,48	28,75	19,88	23,08
22	0,00	42,00	0,00	47,25	36,76	30,20	23,40	20,50
23	0,00	44,00	0,00	48,24	38,12	31,66	24,96	15,88
24	0,00	46,00	0,00	49,40	39,36	33,11	26,48	8,63

LAYERS DEPTH					
Geo	X-loc [m]	Layer 2 [m]	Layer 3 [m]	Layer 4 [m]	Layer 5 [m]
1	0,00	2,61	14,53	0,00	0,00
2	2,00	2,56	14,43	0,00	0,00
3	4,00	2,50	14,35	0,00	0,00
4	6,00	2,43	14,30	0,00	0,00
5	8,00	2,38	14,26	0,00	0,00
6	10,00	2,33	14,23	0,00	0,00
7	12,00	2,33	14,22	0,00	0,00
8	14,00	2,34	14,25	0,00	0,00
9	16,00	2,40	14,28	0,00	0,00
10	18,00	2,50	14,32	0,00	0,00
11	20,00	2,56	14,35	0,00	0,00
12	22,00	2,58	14,37	0,00	0,00
13	24,00	2,56	14,40	0,00	0,00
14	26,00	2,56	14,41	0,00	0,00
15	28,00	2,59	14,43	0,00	0,00
16	30,00	2,61	14,45	0,00	0,00
17	32,00	2,63	14,47	0,00	0,00
18	34,00	2,68	14,50	0,00	0,00
19	36,00	2,77	14,55	0,00	0,00
20	38,00	2,81	14,53	0,00	0,00
21	40,00	2,82	14,45	0,00	0,00
22	42,00	2,86	14,33	0,00	0,00
23	44,00	2,92	14,19	0,00	0,00
24	46,00	2,96	14,07	0,00	0,00

LAYERS VELOCITY				
Layer	Velocity [m/s			
1	306			
2	1499			
3	2652			
4				
5				

Figura 5: ANDAMENTO DELLE DROMOCRONE - BASE "N"

12 di 23

Figura 6: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 1 IN POSIZIONE DI ESTREMO SINISTRO - BASE "N"

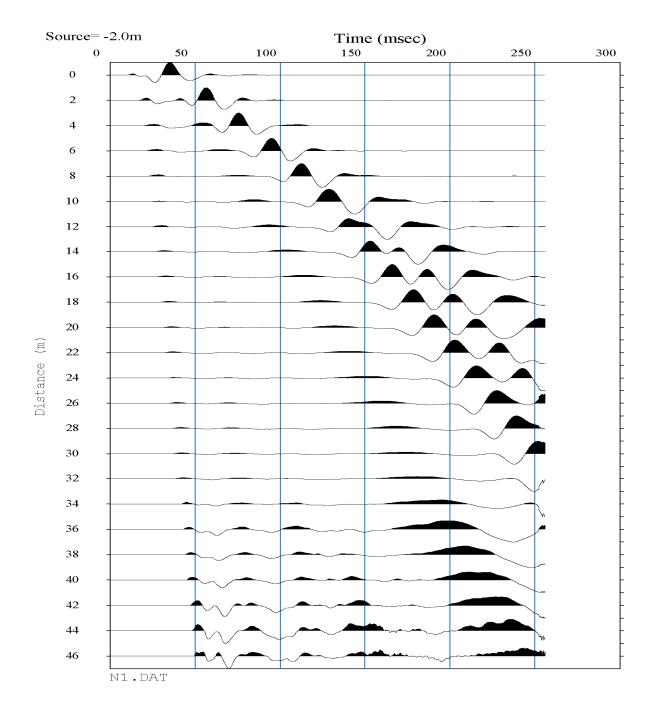


Figura 7: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 6 E NR. 7 IN POSIZIONE DI INTERMEDIO SINISTRO - BASE "N"

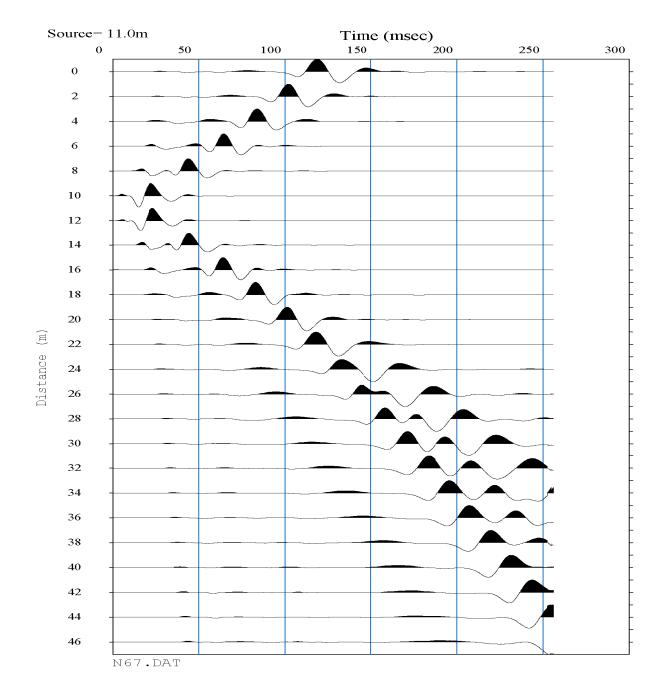


Figura 8: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 12 E NR. 13 IN POSIZIONE CENTRALE - BASE "N"

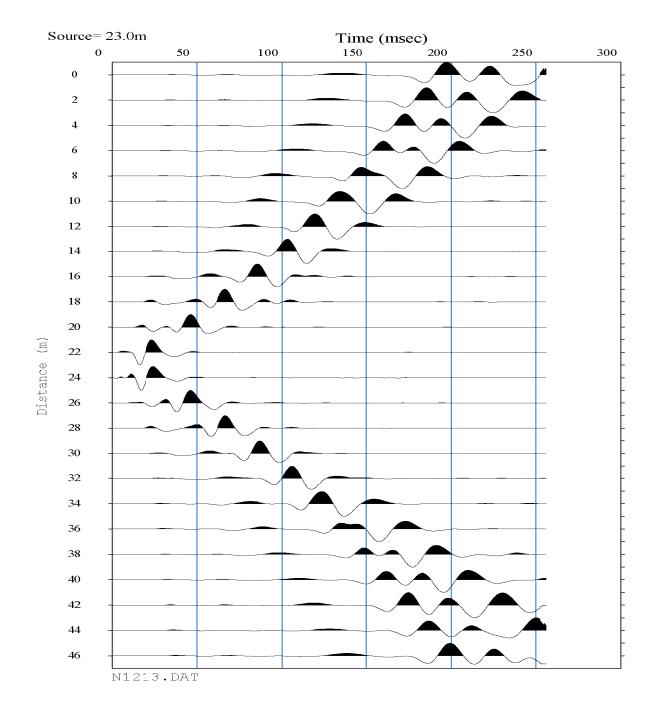


Figura 9: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA TRA I GEOFONI NR. 18 E NR. 19 IN POSIZIONE DI INTERMEDIO DESTRO - BASE "N"

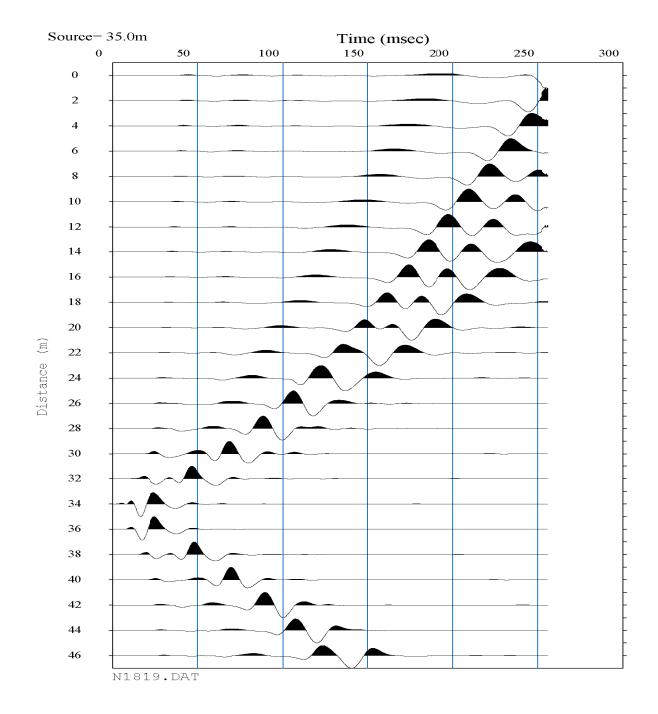


Figura 10: TRACCE SISMICHE RILEVATE CON ENERGIZZAZIONE POSTA A ML. 2,00 ESTERNAMENTE AL GEOFONO NR. 24 IN POSIZIONE DI ESTREMO DESTRO - BASE "N"

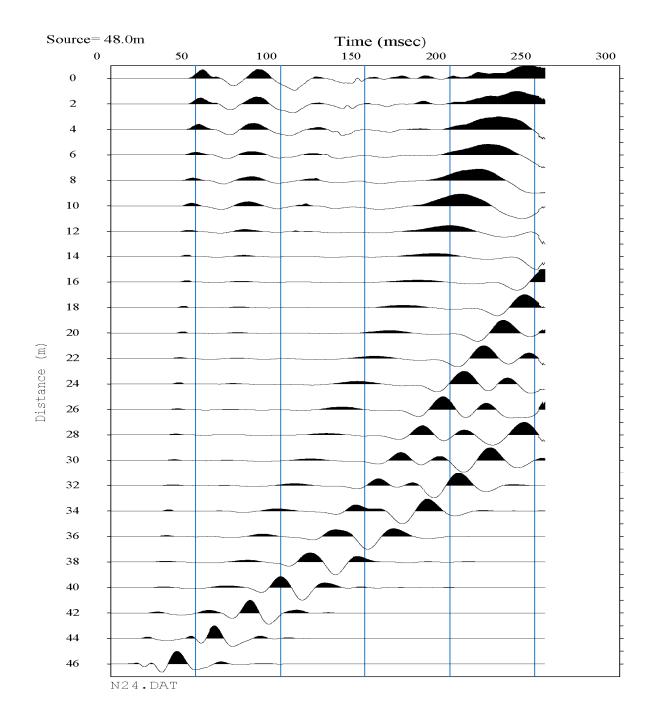
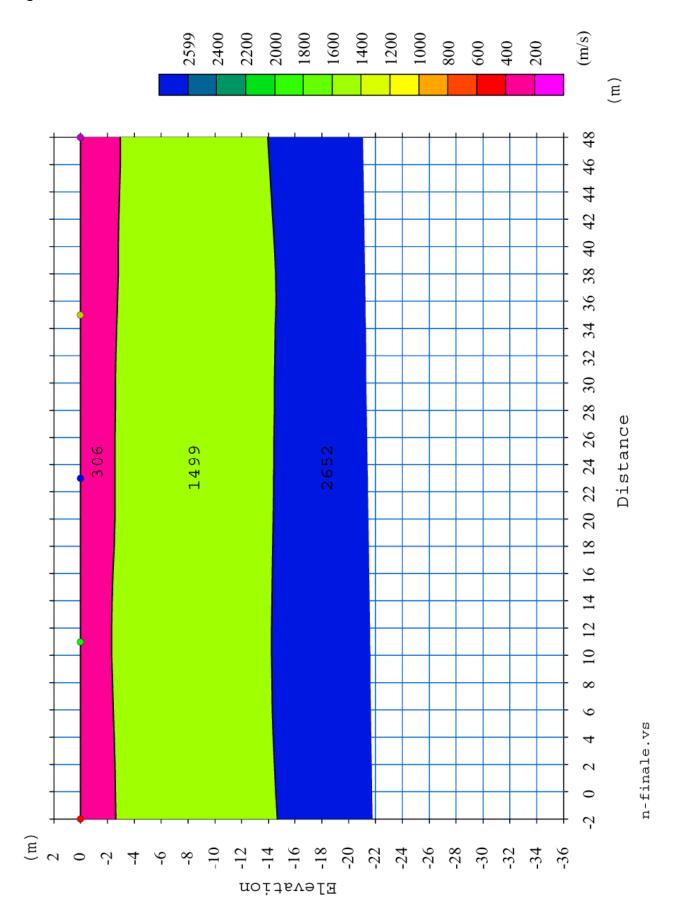



Figura 11: SEZIONE INTERPRETATIVA - BASE "N"

6 VELOCITA' DELLE ONDE DI TAGLIO CON IL METODO MASW - BASE "N"

La determinazione della velocità delle onde sismiche di taglio (V_s) è stata effettuata mediante elaborazione con il metodo MASW, allo scopo di determinare la categoria sismica del terreno (A, B, C, D, E, S1, S2) secondo quanto indicato dalla Nuova Normativa Sismica (Ordinanza P.C.M. 2003 e s.m.i.) e dagli Eurocodici 7 e 8.

Per l'elaborazione MASW si è tenuta in considerazione la traccia sismica rilevata a seguito dell'energizzazione effettuata a ml. 2,00 dal geofono nr. 24 in posizione di estremo destro rispetto alla base sismica.

L'elaborazione ha riguardato l'intero campionamento della registrazione avente durata 2048 mS e una frequenza di campionamento di 500 microS. Le misure del moto in superficie sono state elaborate tramite una doppia trasformata del campo d'onda (trasformate Slant-Stack e di Fourier), con la quale viene rappresentato il segnale nel dominio ω -p (frequenza angolare - slowness), in modo da identificare la curva di dispersione sperimentale delle onde di Rayleigh. Successivamente si procede con la determinazione del profilo di velocità delle onde di taglio V_s attraverso un processo di inversione delle stesse curve di dispersione. Il metodo consiste nell'assumere un profilo di velocità iniziale di primo tentativo e attraverso un opportuno software si calcola la velocità di fase apparente delle onde di Rayleigh corrispondente al profilo stratigrafico di velocità ipotizzato (curva di dispersione teorica). Dal confronto tra la curva di dispersione *sperimentale* e la curva di dispersione *teorica* vengono modificati gli spessori e le velocità del modello per minimizzare la distanza tra le due curve.

Il processo di identificazione si conclude quando si raggiunge la sovrapposizione ottimale fra le due curve, quella *sperimentale* e quella *teorica*.

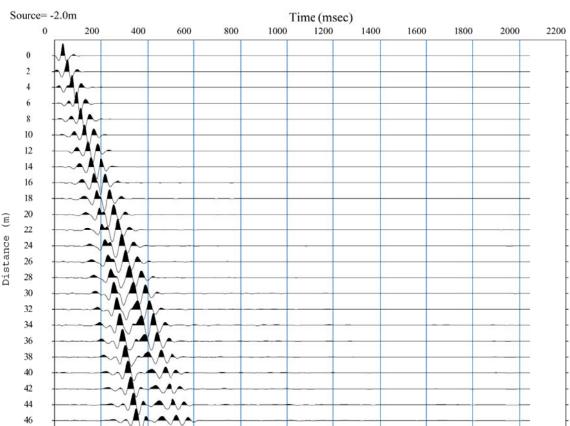


Figura 12: ANDAMENTO TRACCE SISMICHE RILEVATE - BASE "N"

N1M.DAT

Figura 13: ANDAMENTO DELLA CURVA DI DISPERSIONE MISURATA - BASE "N"

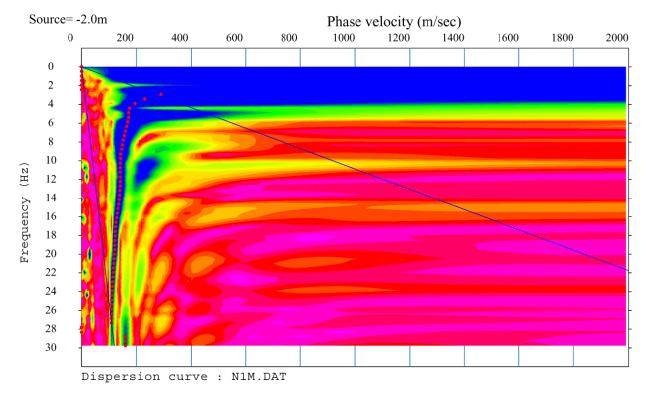


Figura 14: ANDAMENTO DELLE FREQUENZE RILEVATE E DELLA VELOCITA' DI FASE - BASE "N"

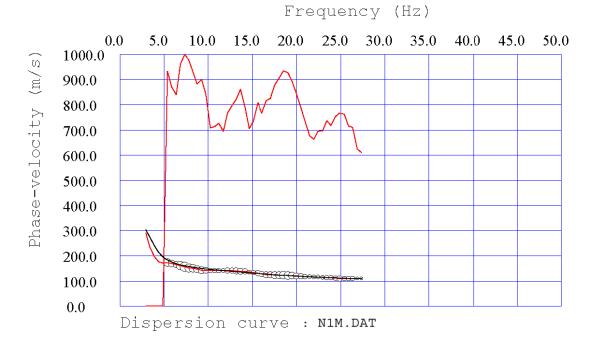
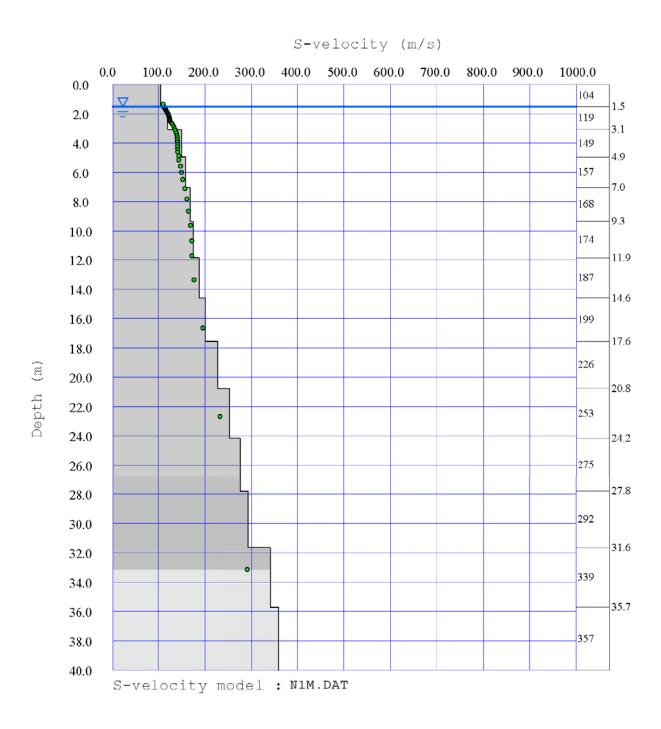



Figura 15: ANDAMENTO DELLE VELOCITA' DI TAGLIO DELLE ONDE SISMICHE CON IL PROCESSO DI INVERSIONE - BASE "N"

7 ELABORAZIONE DATI RILEVATI - BASE "N"

ONDE Vp

L'analisi dei risultati ottenuti dall'indagine di sismica a rifrazione superficiale, ha portato alla classificazione sismostratigrafica dei terreni sottoposti a test investigativo di tipo geometrico e meccanico (profondità dei sismostrati e velocità sismiche longitudinali medie di riferimento).

Le osservazioni ricavate dall'interpretazione dei dati permettono di ricostruire un'immagine sismica del sottosuolo investigato costituita da tre sismostrati con V_{p(media)} rispettivamente pari a 306 m/sec, 1499 m/sec e 2652 m/sec.

Per quanto riguarda la profondità degli orizzonti sismo-stratigrafici si rimanda alla sezione riportata in fig. 11.

ONDE Vs

L'analisi dei risultati ottenuti dall'indagine MASW ha portato alla determinazione degli strati e delle velocità delle onde sismiche trasversali (V_s) fino a una profondità effettiva pari a circa 33 ml. dal piano campagna.

Dall'analisi delle elaborazioni si evidenzia la presenza dei seguenti livelli:

Velocità onde Vp e Vs ottenute dall'elaborazione MASW					
Strato	Quota da	Spessore	Vs	V _P	Peso di
	p.c.	dello strato			volume
	[m]	[m]	[m/s]	[m/s]	[kN/m³]
h1	-1,50	1,50	104	208	13,037
h2	-3,08	1,58	119	1423	17,287
h3	-4,95	1,87	150	1456	17,393
h4	-7,03	2,08	158	1465	17,422
h5	-9,34	2,31	168	1477	17,459
h6	-11,87	2,53	175	1484	17,483
h7	-14,62	2,75	187	1498	17,526
h8	-17,58	2,96	200	1512	17,569
h9	-20,77	3,19	227	1542	17,663
h10	-24,18	3,41	253	1571	17,756
h11	-27,80	3,62	276	1596	17,833
h12	-31,65	3,85	293	1615	17,891
h13	-35,71	4,06	340	1667	18,052
h14	-48,57	12,86	358	1687	18,113

Al termine della elaborazione si è rilevato riscontrato una convergenza dei valori pari a 1.811444%, come riportato nella tabella sottostante:

Iteration=0 RMS=13.671136 m/s (8.493480%)	Iteration=1 RMS=11.379078 m/s (6.812007%)
Iteration=2 RMS=9.507777 m/s (5.475608%)	Iteration=3 RMS=7.988709 m/s (4.404262%)
Iteration=4 RMS=6.759643 m/s (3.586817%)	Iteration=5 RMS=5.773410 m/s (2.993651%)
Iteration=6 RMS=4.990753 m/s (2.555611%)	Iteration=7 RMS=4.376092 m/s (2.244416%)
Iteration=8 RMS=3.900168 m/s (2.001569%)	Iteration=9 RMS=3.535645 m/s (1.811444%)

Ai sensi del DM 14.01.2008 (GU del 04.02.2008, n. 29 – S.O. n. 30), punto 3.2.2. "Categoria di suolo e condizioni topografiche", il valore della velocità media delle onde sismiche di taglio nei primi 30 metri $(V_{s,30})$ può essere considerato come segue:

	Calcolo V _{s.30} ottenuto dall'elaborazione MASW					
Strato	Quota da p.c.	h _i	V _{s,i}	h _i / V _{s,i}	$\Sigma h_i / V_{s,i}$	
	[m]	[m]	[m/s]	[s]	[s]	
h1	-1,50	1,50000	104	0,01442		
h2	-3,08	1,58000	119	0,01322		
h3	-4,95	1,87000	150	0,01251		
h4	-7,03	2,08000	158	0,01318		
h5	-9,34	2,31000	168	0,01374		
h6	-11,87	2,53000	175	0,01446		
h7	-14,62	2,75000	187	0,01468		
h8	-17,58	2,96000	200	0,01482		
h9	-20,77	3,19000	227	0,01408		
h10	-24,18	3,41000	253	0,01345		
h11	-27,80	3,62000	276	0,01312		
h12	-30,00	2,20000	293	0,00752	•	
h13	-30,00	0,00000	0	0,00000	•	
h14	-30,00	0,00000	0	0,00000	0,15919	
			$V_{s,30}$	188	[m/s]	

A Vs. disposizione per ogni chiarimento e/o informazione si porgono distinti saluti.

Vignola, 16/01/2009

Geo-Xpert Italia snc (Dott. Geol. Giorgio Masotti)

